Omo Valley Farm Co-operation P.L.C Addis Ababa

Feasibility Study and Detail Design of Omo Valley Farm Irrigation Project

Section-III: Investigation and Sectoral Studies

Volume-IV: Geotechnical Investigations And Foundation Recommendations

May 2015

Water Works Design and Supervision Enterprise

P.O.Box. 2561 Tel. + 251 11 661 53 71 Fax. + 251 11 661 08 98 Email: w.w.d.s.e@ethione.et Bob Marley Avenue Addis Ababa Ethiopia

Feasibility Study and Detail Design of Omo Valley Farm Irrigation Project

Geotechnical Investigations and Foundation Recommendations

Final Report

May 2015

Issue and Revision Record

Issue	Issue Date	Originator	Checker	Approver	Description
Α	April, 2015	Asebe T.	Tesfaye K. (Dr.)	Dawit N.	Draft
			Seid Sh. (Project M.)		
В	May, 2015	Asebe T.	Tesfaye K. (Dr.)	Dawit N.	Final
			Seid Sh. (Project M.)		

This document has been prepared for the titled project or named part thereof and should not be relied upon or used for any other project without an independent check being carried out as to its suitability and prior written authority of Water Works Design and Supervision Enterprise (WWDSE) being obtained. WWDSE accepts no responsibility or liability for the consequence of this document being used for a purpose other than the purposes for which it was commissioned. Any person using or relying on the document for such other purpose agrees, and will by such use or reliance be taken to confirm his agreement to indemnify WWDSE for all loss or damage resulting there from. WWDSE accepts no responsibility or liability for this document to any party other than the person by whom it was commissioned.

CONTENTS OF THE STUDY AND DESIGN REPORTS

SECTION I	DESIGN REPORTS			
VOLUME – I	Design of Headworks			
VOLUME – II	Design of Irrigation and Drainage System			
VOLUME – III	Operation and Maintenance Manual			
SECTION II	TENDER DOCUMENTS			
VOLUME – I	Technical Specifications			
VOLUME – II	Drawings Album			
VOLUME – III	Bill of Quantities			
SECTION III	INVESTIGATION AND SECTORAL STUDIES			
VOLUME – I	Soil Survey and Land Suitability			
VOLUME – II	Agronomy			
VOLUME – III	Climate and Hydrology			
VOLUME – IV	Geotechnical Investigation			

TABLE OF CONTENTS

LIST OF TABLES	111
LIST OF FIGURES	ıv
LIST OF PHOTOS	v
LIST OF ABBREVIATIONS	vı
1. INTRODUCTION	1
1.1 Project Description	1
1.2 SCOPE AND PURPOSE OF INVESTIGATION	1
1.4 Methodology	
2. GEOLOGICAL SETTING	
2.1 GENERAL	
2.2. LOCAL/SITE GEOLOGY	
2.2.1 Precambrian basement rocks	
2.2.1.2 Plio-Pleistocene Fluvio-Lacustrine deposit	
2.3. SEISMICITY / DESIGN CRITERIA	
2.4 GROUNDWATER AND CAVITIES	10
3. CANAL SYSTEM GEOTECHNICAL INVESTIGATION	11
3.1 CANAL ROUTE	11
3.1.1 General	
3.1. 2 Methods of the investigation	11
3.1.2.1 Engineering Geological Mapping	
3.1.2.2Test pitting	
3.1.2.3 In-situ Testing	
3.1.2.3.3. Sampling 3.1.2.3.46 Laboratory Test	
3.1.2.3.5 Summary	
3.1.3: Findings from Geotechnical Investigation	
3.1.3.1: Geotechnical Characterization of Subsurface Layer of canal routes using laboratory and field description	
3.2 PUMP STATION	29
3.2.1 General	29
3.2.1Methodology	-
3.2.1.1 Test Pitting	
3.2.1.2 Sampling 3.2.1.3. In Situ DCP Tests	
3.2.1.4. Laboratory test results of soil layers	
3.2.2. Geotechnical finding	
4 BEARING CAPACITY ANALYSIS	39
4.1 GENERAL	39
5. CONCLUSION & RECOMMENDATIONS	
5.1 Conclusion	
5.2 RECOMMENDATIONS	
5.2.1 Canal Alignment	
5.2.2 Foundation	

6.0 FARM ROAD GEOTECHNICAL INVESTIGATIONS	53
6.1 INTRODUCTION	53
6.1.1 Scope of Work	
6.1.2 Existing Site Conditions	55
6.1.2.1 Native soils	
6.1.2.2 Groundwater Level	
6.1.1.3Terrain	
6.1.1.4 Climate	
6.2 FIELD INVESTIGATION	
6.2.1 Test pit logging and DCP Testing	
6.2.2 In situ DCP tests	
6.2.2.1. California Bearing Ratio (CBR)	
6.2.3 Laboratory Testing	
6.3.1 Main canal farm road	
6.3.2 Characteristics of Soil Groups Pertaining To Roads	
6.3.2.1Modulus of Deformation	
6.3.2.2 Free Swell	
7. FARM ROAD GEOTECHNICAL CONCLUSION AND RECOMMENDATIONS	64
8. CONSTRUCTION MATERIALINVESTIGATION	65
8.1 FIELD AND LABORATORY GEOTECHNICAL STUDIES	65
8.2 FIELD GEOTECHNICAL STUDIES	65
8.2.1 Material for General Embankment Fill	
8.2.2 Sub-base Material	
8.2.3 Concrete Aggregates	66
8.2.3.1 Fine Aggregate	
8.2.3.2 Concrete Coarse Aggregate	
8.3 LABORATORY GEOTECHNICAL STUDIES	
8.2.4 MATERIAL FOR GENERAL EMBANKMENT FILL	
8.2.4.1 Approximate Quantification of Suitable Material	
8.2.5 SUB-BASE MATERIALS	
8.2.5.1 Approximate Quantification of Suitable Material	
8.2.6 MASONRY STONE	
8.2.6.1 Approximate Quantification of Suitable Material	73
9. REFERENCES	76
APPENDICES	77
APPENDIX-A	78
APPENDIX A-1: Test Pit Log Descriptions	79
APPENDIX A-2: DCP Test Raw Data	
PUMP STATION SITE DCP RESULT	
APPENDIX A-3: DCP Test summary	
APPENDIX A-4: DCP Test CBR Graphs	
APPENDIX A-5: Infiltration test Raw Data	
APPENDIX-B	137
APPENDIX B-1: Summary of Laboratory Test Results	
APPENDIX B-2: Tables & Chart Reference Used for Analysis	

APPENDIX-C	
APPENDIX C-1: Site Photographs	

LIST OF TABLES

Table: 1- 1: Coordinates and excavated depth of the Test pits	2
Table: 3- 1Summary of Geotechnical Investigations	11
Table: 3- 2: Infiltration test result of main canal	
Table: 3-3: Infiltration test result of main canal-1	
Table: 3-4 : Classification tests with estimated permeability values by Allan Hazen's Equation	n.14
Table: 3-5. Indirect method estimation of permeability by grain size and laboratory result of	the
Main canal.	
Table: 3- 6 laboratory permeability test result of the Main canal-1	15
Table: 3-7: Typical correlation between DCP and SPT values after, TRRL, ORN 9, Design c	of
small bridges	
Table: 3-8 Dynamic Cone Penetrometer (DCP) test results and converted Standard Penetra	
(SPT) test results	18
Table: 3-9: Laboratory Tests and Standards used	19
Table: 3-10: Atterberg Limits - Main Canal & Main Canal-1	
Table: 3-11 plasticity standard set by P. Purushothama	
Table: 3-12 Compressibility guide line table	
Table: 3-13 Correlation of Volume change potential plasticity indexes	
Table: 3-14 Particle Size Analysis - Main Canal & Main Canal-1	
Table: 3-15. Moisture Content - Main Canal & Main Canal-1	
Table: 3-16: Typical Values of Specific Gravity (Source: Bowles (1978)	
Table: 3-17.Dispersion Tests	
Table: 3-18.Free Swell Test	
Table: 3-19: Free Swell Tests and Degree of Severity	
Table: 3-20: Consolidation test	
Table: 3-21: shear strength test	26
Table: 3- 22: Summary of the geotechnical investigations carried out along Main Canal & Ma	
Canal-1	
Table: 3- 23 summary table of investigation	
Table: 3- 24 Summary of DCP result of pump stations	
Table: 3- 25 Summary of Laboratory Test Results from disturbed Samples	
Table: 3- 26: Summary of Laboratory Test Results from disturbed Samples Booster site	
Table: 3- 27: Summary of qu derived from N VS qu relationship for different depth	
Table: 3- 28 Bearing capacity equation.	
Table: 3- 29: Summary of bearing capacity result of Main Pump Station site	
	43
Table: 3- 31 Summary of bearing capacity result of Cross Drain structure sites	44
Table: 6- 1: Coordinates and drilled depth of Test pits	56
Table: 6- 2Coordinates of DCP Test	57
Table: 6- 3Sub grade Strength Classes vs. CBR (ERA Pavement Design Manual-2002)	58
Table: 6- 4 CBR Result Summary	59

Table: 6- 5 Sub grade soil classification based on CBR values with distance coverage	59
Table: 6- 6: Laboratory test result summary	60
Table: 6- 7: Soil classification (Liu, 1970)	
Table: 6- 8 Summary of a soil's resilient modulus	62
Table: 6- 9: Liquid limit and expansiveness (Burt G. Look, 2007)	
Table: 6- 10: Plasticity index and expansiveness (Burt G. Look, 2007)	
Table: 6- 11: Free swell and expansiveness (IS: 2911 Part III-1980)	
Table: 8- 1Location of sand sources	
Table: 8- 2 List of Laboratory test	68
Table: 8- 3 Summary of laboratory test result	69
Table: 8- 4 Engineering properties of top materials of pump station foundation site	71
Table: 8- 5 GPS Location of construction material site	74
Table: 8- 6 Anticipated Quantity of construction material sources	74

LIST OF FIGURES

,
,

LIST OF PHOTOS

Photo: 1- 1 photo shows white color crystalline Meta-sedimentary gneiss observed Photo: 1- 2 photo shows Fluvio-Lacustrine deposit on Korcho River	
Photo: 3- 1 View of main pump station site	37
Photo: 3- 2 View of test pits on proposed pump station-2 (Booster Site) Photo: 8- 1: View of Available rock and crusher at site	
Photo: 8- 2: Clay borrow option-1 site view	72
Photo: 8- 3: Clay borrow option-2 site view Photo: 8- 4: Photo view of FRCM site and Gravel source at Omo River near to Muruli Par	
Photo: 8- 5: Photo view of construction material sites	145
Photo: 8- 6: Photo View of field Investigation methodology	146

LIST OF ABBREVIATIONS AND ACRONYMS

BDS	Bulk Disturbed Sample
BS	British Standard
CBR	Californian Bearing Ratio
СН	Chainage
C _U	Undrained shear strength
DBE	Design Base Earthquake
DCP	Dynamic Cone Penetrometer test
E _R	Modulus of deformation
GPS	Global positioning satellite
KPa	Kilopascal
LL	Liquid Limit
MC-CD1	Main canal-Cross Drain
MER	Main Ethiopian Rift
N'	Corrected standard penetration test number
ORN	Overseas road Note
PI	Plasticity Indices
PL	Plastic Limit
PS-1	Main Pump Station
PS-2	Booster Pump Station
SDS	Small Disturbed Sample
SPT	Standard Penetration Test
SNNP	South National Nationality Peoples
SPTN	Standard Penetration Test Number
TP	Test Pit
TRRL	Transport Road Research Laboratory
UCS	Unconfined Compressive Strength
WWDSE	Water Works Design and Supervision

1. INTRODUCTION

1.1 Project Description

This report comprises the result of the Geotechnical Investigation works of Omo Valley Farm irrigation project which has a capacity of cultivating about 5,600 ha of farm land, which is located in Hamer Woreda of South Omo Zone, SNNP Regional State. Water Works Design and Supervision Enterprise have made a contract agreement with the client Omo Valley Farm Corporation P.L.C feasibility and detail to undertake design of farm irrigation system and geotechnical investigation is one of the study components of the project. Accordingly the geotechnical investigation has been made for foundation investigation of canal alignments and drainage structures, farm road sub grade characterization and construction material assessment by means of test pitting and associated in situ infiltrations test, DCP Testing and laboratory testing.

1.2 Scope and Purpose of Investigation

The purposes of this investigation were to investigate engineering performances of the proposed canal route ground materials, available natural construction materials, the sub-surface nature and characterize the area for foundation design of Omo Valley Farm irrigation project and is mainly to provide engineering recommendations regarding the bearing capacities of the formations in terms of shear strength, water tightness and settlement characteristics as outlined here in:.

- i. Reviewing available geologic literature and mapping information,
- ii. Test pit excavations to explore the sub-surface conditions of the proposed head works, cross drainage, construction material borrow sites and to provide general data regarding the site.
- iii. Conducting DCP (Dynamic Cone Penetrometer) testing at intervals of 1000 meters along the farm road to directly measure the field CBR strength of the sub grade and at head work and canal cross drainage sites on surface & within the test pit for foundation investigation via correlating DCP value with SPTN value.
- iv. Conducting infiltrations tests using double infiltrometer for evaluating water tightness condition for the canal alignments.

- v. Determining the type and extent of sub surface geological layers
- vi. performing laboratory tests on selected representative soil and rock samples collected from the test pits and quarry site to evaluate pertinent engineering properties,
- vii. analyzing the field and laboratory data to determine the engineering properties of the geotechnical layers and develop appropriate engineering recommendations and to guide design and construction of the project, and
- viii. Preparing geotechnical report.

1.3 Location

The project is located in South Nation Nationality and Peoples Regional State (SNNPR), South Omo Zone, Hammer Woreda. The area under investigation is generally characterized by flat topographic feature. The coordinate of Test pits, excavated, are measured using hand held GPS (UTM, Adindan Datum), with +/_ 4m accuracy and are presented under table 1-1:

				Elevation		
N٥	TP-ID	Location of test pits		(Hand GPS)	Depth/mt.	
1	MC-CD1-TP-1	190620	573699	424	5.0	
2	MC-CD3-TP-1	191414	573920	414	5.0	
3	MC-CD4-TP-1	194009	574154	418	5.0	
4	MC-CD5-TP-1	194577	574316	413	5.0	
5	MC-CD6-TP-1	194763	574310	418	5.0	
6	MC-CD7-TP-1	195198	574809	422	3.5	
7	MC-TP-1	191580	573646	413	3.0	
8	MC-TP-2	192606	574292	410	3.4	
9	MC-TP-3	193424	574184	414	3.0	
10	(MC)MC-TP-2	195924	576969	470	3.0	
12	(MC)MC-TP-3	195057	578340	421	3.0	
14	(MC)MC-TP-4	194976	579388	439	3.0	
16	(MC)MC-TP-5	194818	579941	467	3.2	
17	(MC)MC-TP-6	194030	580678	432	3.0	
18	(MC)MC-TP-CD2	195153	579010	422	5.0	
19	(MC-1)MC-01-TP-1	197695	577268	461	3.0	
20	(MC-1)MC-01-TP-3	197914	578974	477	3.0	
21	(MC-1)MC-01-TP-5	198226	581252	456	3.0	
22	(MC-1)MC-01-TP-6	197821	582600	459	3.0	
23	(MC-1)MC-01-CD-2	197977	578142	464	5.0	
24	(MC-1)MC-01-CD-3	198123	578223	468	5.0	
25	(MC-1)MC-01-CD-7	198220	581490	463	3.5	
26	PL-TP-1	191190	574210	397	3.0	
27	PS-1-TP-1	189675	575005	409	5.0	
28	PS-1-TP-2	189675	575066	407	5.0	
29	PS-1-TP-3	189661	575030	430	1.0	

Table: 1-1: Coordinates and excavated depth of the Test pits

Water Works Design and Supervision Enterprise

N٥	TP-ID	Location of test pits		Elevation (Hand GPS)	Depth/mt.
30	PS-2	196169	576049	510	5.0
31	G-1	196685	576354	523	5.0
32	G-2	197268	576835	417	5.0
33	S-1-TP-1	195255	574812	462	3.5
34	S-4-TP-1	197687	577120		3.0
35	S-5-TP-1	194031	580749		3.0
36	CB-1-TP-1	193701	573995	409	3.0
37	CB-1-TP-2	193486	573969	428	3.0
38	CB-2-TP-1	191450	582827	429	3.0
39	CB-2-TP-2	191914	582872		3.0
40	GB-TP-1	188690	571428		2.0
41	GB-TP-2	188765	571515		2.0
42	CB-2-AU-1	191679	582967	423	1.0
TOTAL					139.10
	MC-Main canal				
	PC- Primary canal PL- Pipe Line				
	•				
PS-Pump Station G-Gully cross					
S-Sand					
CB-Clay Borrow					
GB-Gravel Borrow					

1.4 Methodology

The methodologies adopted for the geotechnical investigations include trial pitting, lithological description (logging), auguring, conducting double ring infiltration tests, and DCP tests, collecting of representative soil and rock samples and laboratory analysis.

Test pits and auger holes excavation have been carried out along the main canal and main canal-1 covering about 13.140 km and 4.8km starting from the pipe line-1 and pipe line-2 outlet respectively. For both main canal test pits excavation is varies from 3.0 up to 5.0m depth. For head work and canal crossing site test pits excavation 5.0m depth. The materials used during investigation are:

- Double ring infiltrometer,
- DCP with accessories
- Auger,
- GPS, Plastic bags and sacks, cans, rob and ladders, measuring tape, water and others.

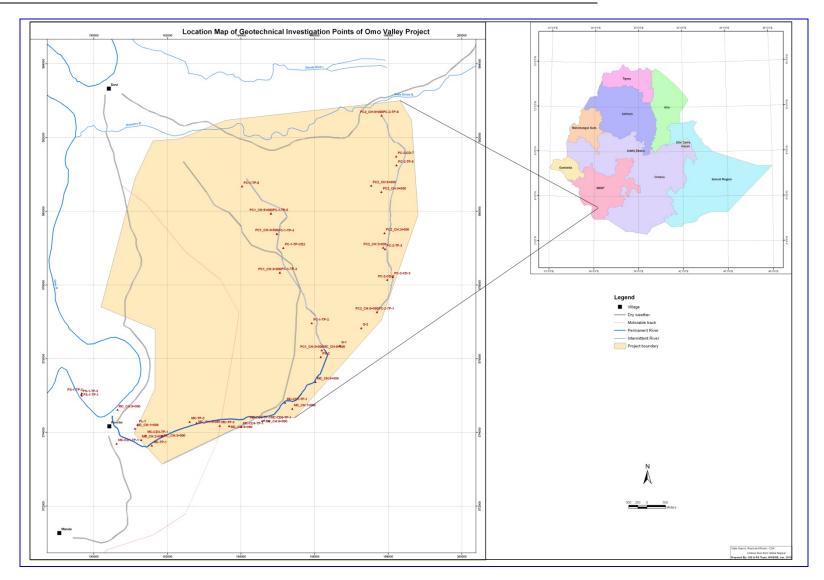


Figure: 1- 1: Location map of project area and investigation points

Water Works Design and Supervision Enterprise

2. GEOLOGICAL SETTING

2.1 General

According to Davidson, 1983, in the region, the rocks that are regionally widespread are the crystalline basements, the Oligocene flood volcanic, isolated outcrops of post-rift volcanic and Plio-Quaternary formations.

The metamorphic basement rocks in this area are highly deformed and metamorphosed till granulites facies (Davidson, 1983) implying that they belong to the lower complex. The gneiss complex was further subdivided in to different types of gneisses. Based on the review of the map, some of gneiss complex geological units exposed in the project area broadly described as follows.

- Layered mafic gneiss and amphibolites (Peha);
- Meta-sedimentary gneiss, layered biotite-quartzo-feldspathic gneiss, locally with muscovite, garnet, sillimanite, minor interlayered amphibolitic, quartos, pyritic, graphitic and calc-silicate gneisses and marble (Pegb);

Moreover, the other dominant geological unit were exposed in the study is Quaternary deposits. Lacustrine, deltaic, and alluvial deposits of the middle Omo plains, Usno plain, and along the various stream in the region are categorized under this. Hence, the lithological units are mapped and described as;

- Undivided alluvial, fluviatile and lacustrine sediments (Q);
- Fluviatile sand, silt (QL)

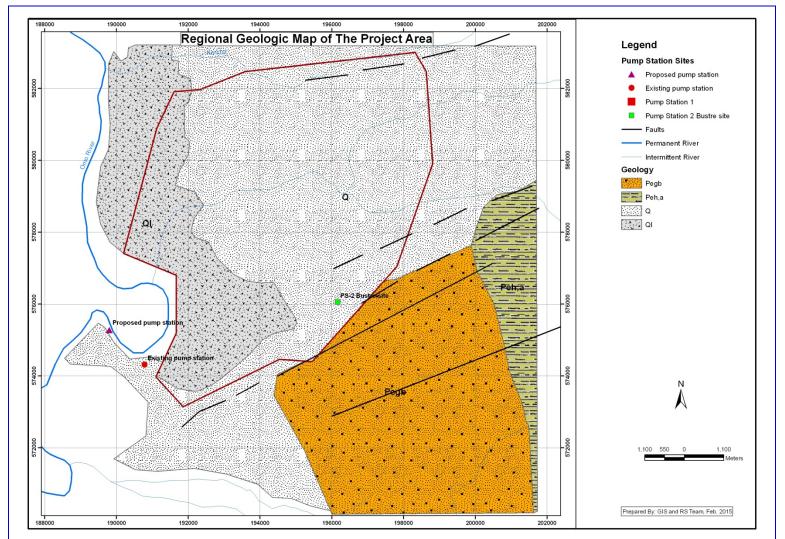


Figure:-2-1. Regional Geological map of the proposed project sites (compiled from geological maps of Omo area. Source geological map of Ethiopia (1:500,000)

2.2. Local/Site Geology

The geology of the Project area is metamorphic basement rocks of Precambrian age where exposed in the Eastern boundary of the site ridge of chiefly composed of. These rocks commonly overlain by intercalated sedimentary sequences that outcrop at different locations in the site. The locally the lowland of the farm lands covered by Quaternary Sediments of Plio-Pleistocene Fluvio-Lacustrine deposit. The geological set of the sites are described in detail as follows;

2.2.1 Precambrian basement rocks

The Precambrian crystalline basement rocks of the area occupy much of the geomorphic features in the eastern and north-east sectors of the study area. This includes in the mountains and some of the lowland parts of the near and around the project area. The type of rocks recognized varies as a function of the lithology as inferred from the regional geology of the basin and field observation this are:

2.2.1.1 Meta-sedimentary Gneiss

Meta-sedimentary gneisses are common along the Eastern and North East boundary of the project surrounding where forming elevated plain. Where they exposed, their distinctive layering could be used to identify and map them in the field. This unit is constituted of dark colored hornblende gneiss and amphibolites biotite gneiss. The field observations of the site in photo 1-1 indicated presence of significant amount of crystalline minerals. It is massive, very hard and tough metamorphic rock.

Photo: 1- 1 photo shows white color crystalline Meta-sedimentary gneiss observed

2.2.1.2 Plio-Pleistocene Fluvio-Lacustrine deposit

This deposit in the study area occurs in the eastern side of Omo River, it covers the lowland of the project area. The deposits lithologically include sand, silt and clay. The sediments in the lowlands are basically sands and silts that are exposed in various parts of the area and along the prominent Rivers of the area like for example, Korcho River and along other have thicker unconsolidated sand with red colored sands was observed in the study area see photo.1-2.

Photo: 1- 2 photo shows Fluvio-Lacustrine deposit on Korcho River **2.3. Seismicity / Design Criteria**

Seismic activities in Ethiopia are generally said to be confined to Afar and the Main Ethiopian Rift valley. The Main Ethiopian Rift (MER), which is part of the East African Rift System, and Afar Depression are considered to be locus of volcanic and seismic activities as they represent extensional tectonics in action. The MER meets the two oceanic rifts, namely Red Sea and Gulf Aden in Afar Depression/Triangle forming three-rift (RRR) triple junction.

The Omo Valley Farm project area is located in the Sothern part of the Main Ethiopian Rift Valley, which is seismically active area. According to the seismic Zoning map of Ethiopia (Figure: 2-2), the project site falls under Zone 4 – corresponding to a zone of major damage where the seismic ground shaking would produce intensity VIII and above.

The horizontal and vertical loads under pseudo-static analysis are represented by appropriate seismic coefficient to give the design acceleration as a fraction of the acceleration due to gravity.

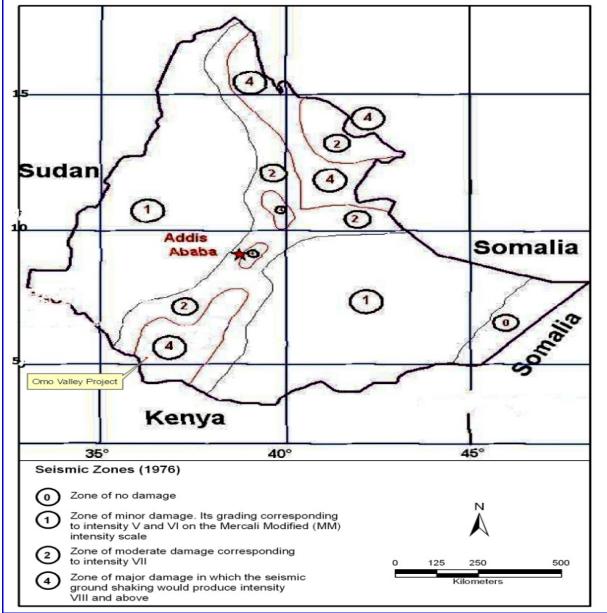


Figure:-2- 2 Seismic Zoning Map of Ethiopia

Remarks: The 'Seismic Risk Map' produced by Laike Mariam Asfaw(1986) for a hundred period and 0.99 probability shows that the study area falls within 8MM scale.

Figure: 2-3 shows seismic hazard map of Ethiopia prepared by the Institute of Geophysical Observatory at Addis Ababa University for a Design Base Earthquake (DBE) with a return period of 300 years (return period for DBE of dams/civil structure is generally taken to be 300 to 400 years). This map shows peak ground acceleration contours as a fraction of acceleration of gravity *g* and has been used as the basis for seismic design of several other dams in Ethiopia. The black star on this map shows the approximate location of the farm site in Omo-Gibe River

Basin with geographic coordinates of 05° 10' to 05° 16' Northing and 36° 12' to 36° 17' Easting.. Based on this map, the nearest contour to the farm site is with a ground acceleration of 0.15g. Therefore, according to this hazard map, the design horizontal coefficient of acceleration would be 0.15. Based on international practices, the vertical acceleration is considered as 1/2 the horizontal acceleration, which is 0.075g. Hence, the vertical coefficient of acceleration is 0.075.

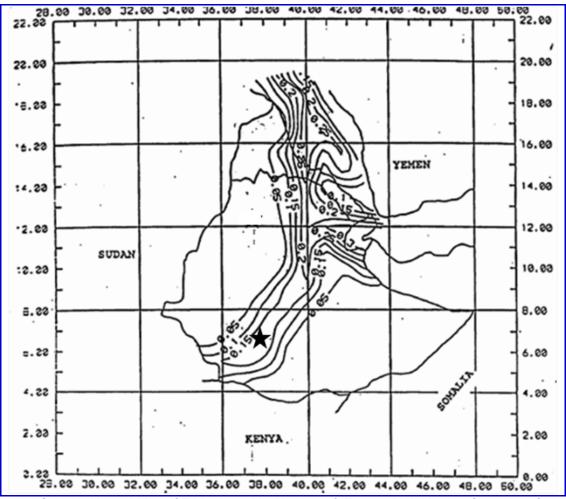


Figure:-2- 3Seismic Hazard Map of Ethiopia and its Northern & Eastern Neighboring Countries, Contours indicate peak ground accelerations as a fraction of g. The Black Star Indicates the Approximate Location of Omo Valley Farm site.

2.4 Groundwater and Cavities

Groundwater was not encountered within the depths of excavated test pits and no groundwater table was observed. No cavities or other kind of weaknesses were noticed within the excavated depths of trial pits.

3. CANAL SYSTEM GEOTECHNICAL INVESTIGATION 3.1 CANAL ROUTE

3.1.1 General

Investigation of the subsurface conditions at a site is prerequisite to the economical design of the irrigation, drainage system works, substructure elements and foundation. It is also necessary to obtain sufficient information for feasibility, detail and economic studies for the Omo-valley farm project.

Comprehensive site investigations have been carried out for the detailed design studies for the irrigation and drainage system works. Under this topic summary of geotechnical investigations undertaken at the Omo-valley project along main canal alignment are presented below and in table 3.1.

- a) 17 test pits in the areas of the main canal, of which 6 were to a depth of 5 m and the remainder were between 3.0 m and 3.5 m deep. Nine double ring infiltration tests were carried out in the test pit, one at 0.5m, one at 1.0m, two at 1.5m, two at 2m, one at 3.0m, one at 3.10m and one at the bottom 5m.
- b) 7 test pits in the areas of the main canal-1, of which 2 were to a depth of 5 m and the remainder were between 3.0 m and 3.5 m deep. Five double ring infiltration tests were carried out in the test pit, two at 0.5m, one at 1.90m, one at 1.5m, one at 2m and one at 1.5m.

Canal name	Canal Length (km)	Number of Test pits	Number of Double ring Infiltration Tests	Number of Disturbed Samples
Main canal	13.140	17	9	14
Main canal-1	4.8	7	5	8
Sum	17.94	24	14	22

Table: 2 1 Summar	v of Controhnical	Investigations
Table: 3- 1Summar	y of Geolechinical	Investigations

3.1. 2 Methods of the investigation

3.1.2.1 Engineering Geological Mapping

Engineering geological mapping is a useful tool in making used in civil project (IAEG, 1984). The engineering geological map guides more detailed work of the surface soil and rock properties. Accordingly, in this investigation surface engineering geological mapping is done to classify geological formations in terms of their geotechnical nature (See fig.3-7).

3.1.2.2Test pitting

Test pits with surface area 1.5mx1.5m were manually dug at 17 points in the main canal and 7 points in the main canal-1 of the project area. The test pits were dug by equipment such as, row bar, Hoe, pickaxes, and shovel. A wood ladder is lowered to the bottom of the pit for detailed logging of the various soil horizons and collecting representative samples for visual description. Upon completion of documentation and sampling, the test pit is photographically documented using digital camera followed by backfilling of the pit by the excavated material. A total of 24 test pits were manually dug, relevant information pertinent to the test pits are presented in the following section.

3.1.2.3 In-situ Testing

The following topics are summarizes the field in-situ tests executed for the geotechnical investigation along the canal routs.

3.1.2.3.1 Permeability test

Permeability test is one of the major in situ field tests on geotechnical investigation having significant value in the determination of seepage along the canal alignment, estimation of permeability properties of underlying soil formation can be determined by using either direct method or indirect methods.

Double ring infiltration test, laboratory permeability test and estimation of permeability using grain size are performed on representative soil layers. Choice of test is depending on the prevailing geological material conditions encountered in alignment.

3.1.2.3.1.1 Direct Methods for Determining Permeability

I. Infiltration tests

The results of the infiltration tests are summarized in Table 3-3. They show an enormous range. On the basis of the results, an average infiltration value are presented in the table below can be used as representative of the seepage from infiltration average value. However, some tests are difficult to conduct because of the coarse sand nature of the soil layer; in this case we try to collect water data by simply measuring the amount of water in (lit.) with time taken in (min) see table 3-2 &3-3 and the raw data of infiltration test result in appendix-A-5.

Name								Main Ca	nal						
Chainag	56	7.0	180	92.8	3934. 0 - 4565.	4565.9	504	15.8	644	45	74414. 3 - 10041.	10041. 2 - 11038.	110	38.1-	11587. 6
e (m)		92.8		34.0	9	5045.9		44.5	-741		2	1		87.1	-13140
Depth	0.0-	2.5-	0.0-	1.8-	0.0-		0.0-	2.8-		2.0-					
(m)	2.5	5.0	1.8	3.0	3.0	0.0-5.0	2.8	5.0	0.0-2.0	5.0	1.5	2.0	0.5	2.0	3.1
							In	filtration	rate						
	cm/se	cm/se	cm/se	cm/se	cm/se	cm/se			cm/se	cm/se	cm/se		cm/se	lit./mi	
Range	С	С	с	С	С	С	cm/sec	cm/sec	С	С	с	lit./min.	С	n	cm/sec
Maximu															
m		1.8		8.1		20.7					17.3	10.5	1.8	5.6	8.0
Minimu															
m		1.8		8.1		13.5					17.3	10.5	1.8	5.6	8.0
Average		1.8		8.1		17.1					17.3	10.5	1.8	5.6	8.0

Table: 3-3: Infiltration test result of main canal-1

Name	Main Canal_1									
Chainage (m)	0+000-0+700	0+700 -1+300	1+300 -3+000	3+000 4+000	4+000 -4+800					
Depth										
(m)	0.5-2.0	1.90	1.50	0.50	0.0-3.0					
		·	Infiltrations rate)						
Range	cm/sec	cm/sec	cm/sec	cm/sec						
Maximum	28.4	1.1	0.9	1.4						
Minimum	4.3	1.1	0.9	1.4						
Average	16.35	1.1	0.9	1.4						

3.1.2.3.1.2 Indirect Methods for Determining Permeability and laboratory test

Usually, the soil classification is one of the methods in order check on the permeability magnitude. For cohesionless soils, the size and shape of the soil particles influence the permeability. As a result of, the Unified Soil Classification System (U. S. Army Engineer Waterways Experiment Station 1960), Allan Hazen's found Equation, that for uniform loose clean sands the permeability was given by (Taylor 1948)

Where

k - Coefficient of permeability in cm per second

 D_{10} = particle size in cm at which 10 percent of the material is finer by weight (also known as Hazen's effective size). Hazen's experiments were made on sands for which 0.1 mm < D_{10} < 0.3 mm and the uniformity coefficient, C_u < 5, where

$$C_{u} = \frac{d_{60}}{d_{10}}$$
, where

C_u = uniformity coefficient

 D_{60} = particle size at which 60 percent of the material is finer by Weight.

For natural fine to medium, relatively uniform sands, classified SP or SW in the Unified Soil Classification System (U. S. Army Engineer Waterways Experiment Station 1960); generally, d_{10} mm 0.01 to 0.02 implies fine sands and having estimated K value approximately 10^{-4} m/sec.

The results of the classification tests shows that; ML, SC, SM, CL and SP in the Unified Soil Classification System. The result of classification tests with estimated permeability values by Allan Hazen's Equation are summarized in Table 3-4.

TP ID	Main Canal										
IPID	Depth (m)	d ₁₀ in (cm)	d_{10}^{2} in (cm)	K (cm/sec)	Classification test						
MC-TP1	0.0-1.80	0.017	0.000289	2.9*10 ⁻²	ML						
	1.80-3.0	0.0039	1.52E-05	1.5*10 ⁻³	ML						
MC-CD3	0.0-1.5	0.0039	1.52E-05	1.5*10 ⁻³	ML						
	3.20-5.0	0.00031	9.61E-08	9.61*10 ⁻⁶	ML						
MC-CD4	1.0-2.80	0.00031	9.61E-08	9.61*10 ⁻⁶	CL						
	2.80-5.0	0.016	0.000256	2.6*10 ⁻³	ML						
MC-CD5	1.10-3.30	0.0021	4.41E-06	4.4*10 ⁻⁴	SC						
MC-CD6	1.5-2.0	0.0003	9E-08	9*10 ⁻⁶	CL						
	2.10-5.0	0.016	0.000256	2.6*10 ⁻²	ML						

Table: 3-4 : Classification tests with estimated permeability values by Allan Hazen's Equation

Name				1		,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Main Ca			1					1
Chain age (m)	0+000 -1+677			1+67 -4+17		4+17	5-4+77	75	4+776- 4+974	4+975 -5+523		5+524- 8+094	8+095 -10+2		10+239- 11+338		11+3 39- 13+1 40
Depth (m)	0.0- 2.50	1.80- 3.0	3.20 -5.0	0.0 - 2.1 0	2.10- 5.0	0.0 - 1.0	1.0- 2.80	2.80- 5.0	0.0-5.0	0.0- 2.10	2.10- 5.0	0.0-5.0	0.0- 2.60	2.60- 5.0	0.0-1.70	1.7 0- 3.0	0.0- 3.0
Soil type	ML	ML	ML	CL	SM to ML	SP	CL	ML	SC	CL	ML	SP	SM	SP	CL	SP	SM
		1	•						Permeab	ility		•	•	•			
Rang e	cm/sec	;		cm/se	ec	cm/se	ec		cm/sec	cm/s ec	cm/ sec	cm/sec	cm/s ec	cm/sec	cm/sec		cm/s ec
Maxi mum Minim	2.9*1 0-2 1.5*1	1.5*1 0-3	9.61 *10-6			10-4 to 10-2	9.6 1*1 0-6	2.6*1 0-3	4.4*10-4	9*10- 6	2.6* 10-2	10-4 to 10-2	10-7 -10- 5	10-4 to 10-2	10-10 to 10-8	10 -4 to 10 -2	10-7 -10- 5
um	0-3															10	
Avera ge	3.05* 10-2	1.5*1 0-3	9.61* 10-6		1*10- 4	10-4 to 10-2	9.6 1*1 0-6	2.6*1 0-3	4.4*10-4	9*10- 6	2.6* 10-2	10-4 to 10-2	10-7 -10- 5	10-4 to 10-2	10-10 to 10-8	-4 to 10 -2	10-7 -10- 5

Table: 3-5. Indirect method estimation of	nampaability by avain aima and lab	anatam (naacult af tha Main aanal
Table 3-5 Indirect method estimation of	permeability by orain size and lab	pratory result of the Main Canal
	permeasing by grain eize and lab	oratory recard or the main canan

Table: 3- 6 laboratory permeability test result of the Main canal-1.

Chainage (m)	0+000-0+700	0+700 -1+300	1+300 -3+000	3+000 4+000	4+000 -4+800
Depth (m)	0.5-2.0	1.90	1.50	0.50	0.0-3.0
			Permeability		
Range	cm/sec	cm/sec	cm/sec	cm/sec	cm/sec
Maximum					8.17*10-4
Minimum					8.17*10-5
Average					8.17*10-6

3. 1.2.3.2. In situ DCP test

A total of 14 DCP tests were conducted in the structure sites at the surface and inside test pits in order to determine the resistance of soil horizons. To assess the relative density/consistency of these soils TRRL DCP (Dynamic Cone Penetrometer A2465) with hammer weight of 8kg dropping freely through a height of 575mm and a 60° cone having a diameter of 20mm was used. After assembling the apparatus, the zero reading is recorded followed by raising the hammer and lets it to fall freely. A scale reading is taken after a set number of blows and the number of blows is changed between readings according to the strength of the layer being penetrated. All the DCP test results recorded on a field data sheet are plotted with the depth of penetration against number of blows using a spreadsheet. The slopes of the curves represent the penetration depth per number of blows (Figure 3-1).

The rate of change of the slope of the curves or the penetration depth per number of blows revealed the different soil layers and their relative density or consistency. The DCP values obtained for different soil types then converted to SPT N-values/300mm following the correlation developed by Transport

Road Research Laboratory (TRRL), UK, Overseas road Note (ORN) 9, Design of small bridges (Table 3-8), to compute the bearing capacity using Meyerhof's equation (cited in Bowels, 1988).

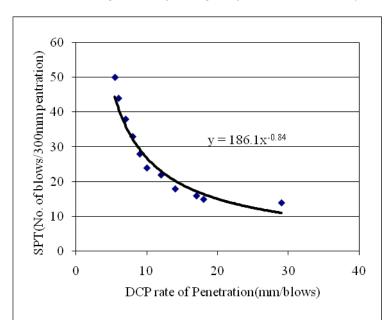


Figure: 3- 1 Typical Dynamic Cone Penetrometer test result

DCP value mm/blow	SPT value blows/300mm
5.5	50
6	44
7	38
8	33
9	28
10	24
12	22
14	18
17	16
18	15
29	14
50	
100	

 Table: 3- 7: Typical correlation between DCP and SPT values after, TRRL, ORN 9, Design of small

 bridges

Dynamic Cone Penetrometer tests were conducted inside/top of test pits at a depth of 0.0m (surface), 1.5m, and 3.0m for the Pump station-2 (Booster) site and for Pump station-1 at a depth of 1.0m and 1.73m to determine the resistance of various soil horizons underlying the pump station Sites. A total of four DCP tests were conducted in both pump station sites at the surface and covered by soils inside test pits in order to determine the resistance these soil horizons.

The statistical average values of the penetration are used for calculating the SPT-Values using the relation in equation (1-2) below. The average DCP value of each layer is converted in to SPT-N values, using the relation suggested by a user guide of Minnesota Department of Transportation (Mn/DOT):

Equation: 1- 2......SPT= 240.17 DCP^{-0.967}

Where SPT= Standard Penetration Test number of blows (N values)

DCP=adjusted dynamic cone penetration result in mm/blow for a given soil layer

Converted SPT N-values are corrected for moisture and considered for computation of the bearing capacity. Design SPT- N values of soils layers below ground obtained from dynamic cone Penetration Data are presented below in table 3-9.

In very fine, or silty, saturated sand Terzaghi and Peck recommended that the penetration number N be corrected to N' if N is greater than 15.

Equation: 1- 3N	' = 15 + 0.5(N – 15)
-----------------	----------------------

The rationale for this correction was that the soil must be dense if the blow count is greater than 15; therefore, the volume displacement at a high penetration rate of SPT would produce high pore pressure which would further increase the blow count.

No.	TP ID.	Depth (m)	DCP Value	SPT N value/300mm	Adjusted SPT N-value
1	MC-CD3-TP1	0.0-0.75	9.95	26	20.5
2		0.0-0.62	9.8	26	20.5
3	MC-CD4-TP1	1.6-2.4	17.7	15	15
4	MC-CD5-TP1	1.5-2.80	60.9	5	10
5	MC-CD5-TFT	2.80-3.57	20	13	14
6	MC-CD7-TP1	0.0-0.68	12.8	21	18
7	MC-TP-1	0.50-1.29	13.3	20	17.5
8		0.0-0.73	14.7	18	16.5
9	— MC-01-CD-3	1.50-2.25	32.7	8	11.5
10	MC-01-CD-7	0.0-0.67	8.8	29	22

 Table: 3- 8 Dynamic Cone Penetrometer (DCP) test results and converted Standard Penetration (SPT) test results

In calculating the allowable bearing capacity for designing foundation of the proposed pump station and cross drainage site; the SPT N-values are calculated as the average adjusted N-values found between ½ B above and 2B below the proposed footing depths, with the assumption of B to be the width of the foundation. The adjusted N-value from the measured value presented in Table 3.8.The design SPT N-values are used to determine the bearing capacities, according to Meyerhof's equation (cited in Bowles, 1997) is given as:

Equation: 1- 4..... $q_{all} = N'/F_2(1+F_3/B)K_d$

Where:

 q_{all} = Allowable bearing pressure for Settlement limited to 25 mm. $K_d = 1+0.33*D/B<1.33$ F2 = 0.08 F3 = 0.3 F4 = 1.2 B = Width of foundation D = Depth of foundation

3.1.2.3.3. Sampling

Representative samples taken from both test pits and subsequent visual description are taken to determine the engineering properties.

3.1.2.3.46 Laboratory Test

Representative soil and rock samples were selected and tested at WWDSE laboratory to check field classification and to determine appropriate engineering properties.

The laboratory testing program for soil samples included moisture content tests, Atterberg Limits tests, sieve analyses, Oedometer consolidation, direct shear, shrinkage limit, free swell, specific gravity; bulk density tests on soil samples. Each soil sample is classified on the basis of texture and plasticity in accordance with the BIRTISH Standard Test and Classification System. Moreover, Compressive strength tests(UCS), specific gravity, water absorption, unit weight, porosity and point load tests have been conducted on rock core samples.

The project site soil and rock are categorized into the major zones on the basis of the field investigation and this has been confirmed by the laboratory test results. The laboratory test results from this exploration are included in the Appendix-B-1 of this report.

The following laboratory tests have been performed on disturbed soil samples and rock collected from excavated test pits: -

Laboratory testing	Number of Test	Standard
Grain size distribution (sieve analysis)	25	BS Test 7(A) & 7 (B)
Atterberg limits (LL, PL & PI)	25	BS Test 2 (A) & (B)
Natural Moisture Content (NMC)	23	BS Test 1(A)
Specific gravity	2	ASTM, C-128
Bulk unit weight	17	Gibb' & Holtz (1956)s
Free swell	15	Gibb' & Holtz (1956)s
Water absorption	2	ASTM, C-128
Direct shear	12	BS
Oedometer Consolidation	7	BS1377:1975, test17
Standard compaction	2	BS1377:1975, test12 &
		13
Permeability	5	ASTM D2434
Sulphate	15	Water Extract
Chloride	15	Water Extract
Double Hydrometer	2	ASTM, D4221
LAA	2	
Point load	1	
CBR	1	AASHTO T 193
Soundness, %	1	
AIV, %	1	
Fineness Modulus	1	

Table: 3-9: Laboratory Tests and Standards used

I. Atterberg Limits

The Atterberg limit values of the samples taken from the Main canal& Main canal-1 test pits are given in Table 3-10.

Toot Dit Nr	Lesstian	Domth (ma)	Sample Ture	Atterbe	Atterberg Limits				
Test Pit Nr	Location	Depth (m)	Sample Type	LL%	PL%	PI%			
	Main Canal								
		0.0-1.50	Disturbed	22.50	NP				
MC-CD3-TP-1	Main canal	3.20-5.00		32.78	NP				
		1.00-2.80	Disturbed	22.30	15.56	6.74			
MC-CD4-TP-1	Main canal	2.80-5.00		24.04	NP				
MC-CD5-TP-1	Main canal	1.10-3.30	Disturbed	17.55	NP				
		1.50-2.00	Disturbed	42.68	23.85	18.83			
MC-CD6-TP-1	Main canal	2.10-5.00		23.27	NP				
		0.60-1.80	Disturbed	27.06	NP				
MC-TP-1	Main canal	1.80-3.00		24.00	NP				
(MC)MC-TP-4	Main canal	0.00-1.70	Disturbed	42.42	21.50	20.92			
		Main Car	nal-1						
(MC-1)MC-01-CD-2	Main canal -1	1.60-2.0	Disturbed	20.95	NP				
		1.10-2.0	Disturbed	33.72	27.56				
(MC-1)MC-01- CD -3	Main canal -1	2.00-5.00		26.39	19.89				
(MC-1)MC-01-TP-6	Main canal -1	0.00-3.00	Disturbed	25.24	NP				
(MC-1)MC-01-CD-7	Main canal -1	1.00-3.50	Disturbed	25.05	14.60	10.45			

Table: 3-10: Atterberg Limits - Main Canal & Main Canal-1

According to the standard set by P. Purushothama all the values obtained for the selected samples have plasticity index value of dominantly between 0 &<7; which further implies that the soil material is non to low plastic except two samples have plasticity index value of > 17which implies that the soil material is high plastic.

Table: 3-11 plasticity standard set by P. Purushothama

Plasticity index (%)	Plasticity	
0	Non-plastic	
<7	Low plastic	
7-17	Medium plastic	
>17	High plastic	

As to the liquid limit value of the samples, one can see that the soil material has low to medium compressibility, since compressibility decreases with decreasing liquid limit. The lower the liquid limit of clay, the lower compressible it will be when compacted.

Table: 3-12 Compressibility guide line table
--

Liquid limit	compressibility
< 35%	low compressibility
35 - 50 %	medium compressibility
>50%	high compressibility

(Source; P.Purushothama, 2008)

Because of the low plasticity nature of the soil samples, there will be a good workability. Due to low plastic with plasticity index less than 25% it cannot creation foundation problems. Volume changes occur in soil deposits due to changes in water content and in effective stress produced by neutral stress. This further leads to a compression in the soil structure, termed shrinkage.

Table: 3-13 Correlation of Volume change potential plas	sticity indexes
Volume change potential	PI (%)
Low	0 - 30
Moderate	30 - 50
High	>50
	Source: Holtz and Cibbs (1056)

tential planticity ind Table: 0.40 C 1.0 f \ /~I

Source: Holtz and Gibbs (1956)

Accordingly, the soil samples have plasticity index value range of 0.00-20.9%, which implies low potential volume change of the soil material.

II. Particle Size Analysis

Particle size analysis of soils determines the range of size of particles and the percentage of particles in each of the sizes between the maximum and the minimum. The particle size analyses for the samples from the Main canal are given in Table 3.14.

As can be inferred from Table 3.14, the fine material percentage has a value range of 3.80-54%& 6.3-57.6% for main canal & main canal-1 respectively. Furthermore, from the grain size curve one can see that the soil is well graded; and the workability of a well-graded soil is good.

Toot Dit Nr	Depth	Sample	Particle siz	Particle size (mm)					
Test Pit Nr	Location	(m)	Туре	Cobble %	Gravel %	Sand %	Silt %	Clay%	Fine %
			Main	Canal					
		0.0-1.50	Disturbed			86.64	9.25	4.11	13.36
MC-CD3-TP-1	Main canal	3.20-5.00				57.12	38.90	9.98	48.88
		1.00-2.80	Disturbed	0		51.12	38.90	9.98	48.88
MC-CD4-TP-1	Main canal	2.80-5.00				93.23	5.12	1.68	6.80
MC-CD5-TP-1	Main canal	1.10-3.30	Disturbed			62.59	32.91	4.50	37.41
		1.50-2.00	Disturbed	0		56.55	33.79	9.66	43.45
MC-CD6-TP-1	Main canal	2.10-5.00		0	13.94	77.98	7.17	0.91	8.08
		0.60-1.80	Disturbed	0	2.23	93.97	3.8	0.00	3.80
MC-TP-1	Main canal	1.80-3.00		0	13.24	69.73	13.15	3.88	17.03
(MC)MC-TP-4	Main canal	0.00-1.70	Disturbed	0	0	61.00	28.00	11.00	39.0
		0.50-1.0		0	0	42.00	42.00	12.00	54.0
(MC)MC-CD-4	Main canal	1.8-3.0	Disturbed	0	62.00	38.00	0	0	[
			Main C	Canal-1					
(MC-1)MC-01-CD-2	Main canal -1	1.60-2.0	Disturbed	0	0	93.66	3.08	3.26	6.3
		1.10-2.0	Disturbed		0	42.41	53.35	4.25	57.6
(MC-1)MC-01- CD -3	Main canal -1	2.00-5.00]		0	59.70	37.80	2.49	40.3
		0.00-3.00	Disturbed		0	80.00	14.00	6.00	20.0
(MC-1)MC-01-TP-6	Main canal -1	0.5-1.0]	0	0	80.00	16.00	2.00	18.0
(MC-1)MC-01-CD-7	Main canal -1	1.00-3.50	Disturbed		7.93	43.25	35.41	13.40	48.8

Table: 3-14 Particle Size Analysis - Main Canal & Main Canal-1

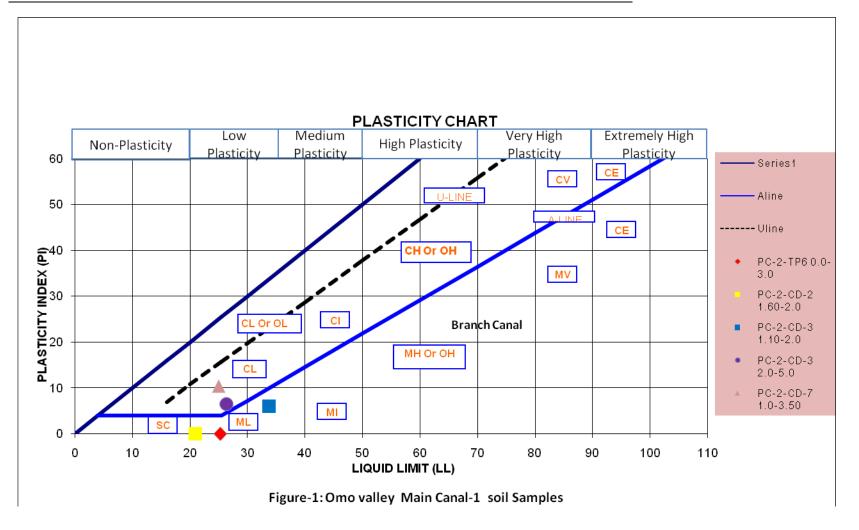


Figure: 3-2: Omo Valley Main Canal-1 soil Sample classifications by Casagrande Plasticity chart

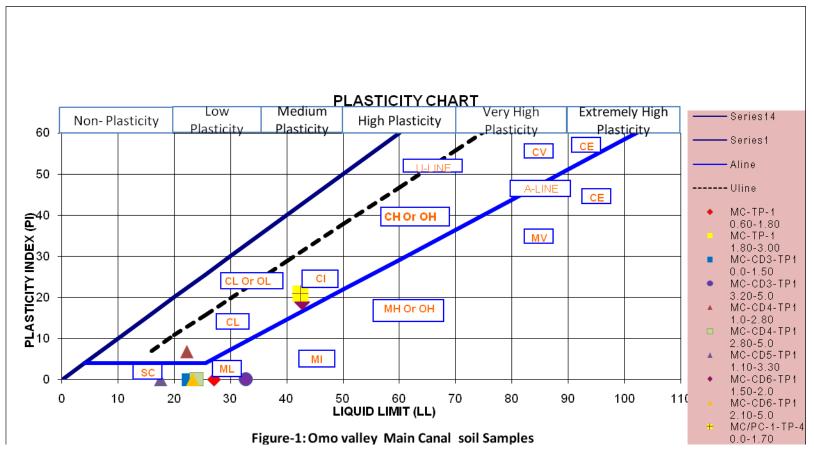


Figure: 3- 3: Omo Valley Main Canal soils Sample classification by Casagrande Plasticity chart

Where

- ML Inorganic silts of low plasticity MH Inorganic silt of High plasticity
- $\label{eq:CL-lorganic} CL-Inorganic clay of low to medium plasticity \quad CH-Inorganic clay of High plasticity$
- OL Organic silt of low plasticity OH Organic clays of High plasticity

III. Moisture Content

The moisture content of soil samples from the Main canal are presented in Table 3.15. Engineering properties change so much with moisture content that it is used primarily to assist in interpreting other index properties.

Test Pit No.	Location	Depth (m)	Sample Type	Natural Moisture Content %
	Ма	ain Canal		
		0.0-1.50	Disturbed	0.54
MC-CD3-TP-1	Main canal	3.20-5.00	Disturbed	1.12
MC-CD4-TP-1	Main canal	1.00-2.80	Disturbed	10.8
MC-CD5-TP-1	Main canal	1.10-3.30	Disturbed	1.97
		1.50-2.00	Disturbed	2.43
MC-CD6-TP-1	Main canal	2.10-5.00	Disturbed	0.87
		0.60-1.80	Disturbed	5.2
MC-TP-1	Main canal	1.80-3.00	Disturbed	7.82
	Mai	in Canal-1		
(MC-1)MC-01-CD-2	Main canal -1	1.60-2.0	Disturbed	1.39
		1.10-2.0	Disturbed	2.39
(MC-1)MC-01- CD -3	Main canal -1	2.00-5.00	Disturbed	1.76
(MC-1)MC-01-CD-7	Main canal -1	1.00-3.50	Disturbed	0.46

	Table: 3-15.	Moisture (Content -	Main Cana	l & Ma	in Canal-1
--	--------------	------------	-----------	-----------	--------	------------

IV. Specific Gravity

The specific gravity of most soils falls within a narrow range and thus it is not used in the identification or classification of soils as in the identification of minerals. Specific gravity results of the soil are given in Table3.16 from literature review.

As can be inferred from Table 3.16, the specific gravity values have a narrow range of 2.65 to 2.80. This value range is typical for silty sand, sand and inorganic clay.

Table: 3-16: Typical Values of Specific Gravity (Source: Bowles (1978))
--	---

Type of soil	Specific gravity , G	
Sand	2.65-2.67	
Silty sand	2.67-2.70	
Inorganic clay	2.70-2.80	
Soil with mica or iron	2.75-3.00	
Organic soils	Variable but may be under 2.00	

V. Dispersion Test

To check the dispersivity of a soil; dispersion tests were conducted on soil samples from Main canals using the double hydrometer method. The results are presented in Table 3.17.

The results obtained indicate that the soil materials in the main canal at ch: 11+038.09-11+587.56 and as well as main canal-1 are non-dispersive; thus erosion would not be a

Location	Depth (m)	Sample Type	Double hydrometer			
Main canal	0.00-1.70	Disturbed	ND			
	0.00-3.00	Disturbed	ND			
Main canal -1	0.5-1.0	Disturbed	ND			
	Location Main canal	Location Depth (m) Main canal 0.00-1.70 0.00-3.00	LocationDepth (m)Sample TypeMain canal0.00-1.70Disturbed0.00-3.00Disturbed			

Table: 3-17.Dispersion Tests

Remark: ND = Non dispersive

VI. Free swell

The result of free swell tests on four soil samples from Main canal are given in Table 3.19. Free swell of a soil is the increase in the volume of a soil, without any external constraints, on submergence in water. In general, the free swell ceases when the moisture reaches the plastic limit.

Free swell tests were undertaken in most of the samples and the results are evaluated as per Bureau of Indian Standards and the values and degree of severity are presented in Table: 3-18 and Table: 3-19. The Free Swell results range from 0.00 to 37.5% implying Non-Critical degree of severity.

Test Pit Nr	Location	Depth (m)	Sample Type	Free	
				Swell (%)	
Main canal					
MC-CD3-TP-1	Main canal	0.0-5.00	Disturbed	10.00	
MC-CD4-TP-1	Main canal	0.00-5.00	Disturbed	0.00	
MC-CD5-TP-1	Main canal	0.00-5.00	Disturbed	0.00	
MC-CD6-TP-1	Main canal	1.50-5.00	Disturbed	37.50	
(MC)MC-TP-4	Main canal	0.00-1.70	Disturbed	10.00	
	Mair	canal-1			
(MC-1)MC-01-TP-6	Main canal -1	0.00-3.00	Disturbed	0.00	
(MC-1)MC-01- CD -2	Main canal -1	1.60-4.00	Disturbed	5.00	
(MC-1)MC-01- CD -3	Main canal	1.10-5.00	Disturbed	10.00	
(MC-1)MC-01-CD-7	Main canal	1.00-3.50	Disturbed	0.00	
Table: 3-19: Free Swell Tests and Degree of Severity					
S. No	Free Swell (%)		Degree of Severity		
1	<50		Non Critical		
2	50 – 100		Marginal		
3	100 – 200		Critical		
4	>200		Severe		

Table: 3-18.Free Swell Test

VII. Consolidation

The Consolidation test results are given in Table 3.20.

Table: 3-20: Consolidation test

Test Pit Nr	Location	Depth (m)	Sample Type	Conso. Cc
MC-TP1	Main canal	0.00-3.00	Disturbed	0.0341
MC-01-CD-2	Main canal	1.60-4.00	Disturbed	0.057
MC-01-CD-7	Main canal	1.0-3.50	Disturbed	0.046

VIII. Direct Shear

The shear strength depends on clay fraction percentage. Clays with a high clay $\square \ \emptyset \square$ parameters C and fraction percentage exhibit lower shear strengths. Results of Direct Shear Strength test are presented in table 3.21

Test Pit Nr	Location	Depth	Sample	Direct Shear		
		(m)	Туре	C(KPa)	□ø □Deg.	
Main canal						
MC-TP1	Main canal	0.00-3.00	Disturbed	4.33	37.6	
MC-CD3-TP-1	Main canal	0.0-5.00	Disturbed	9.93	30.42	
MC-CD4-TP-1	Main canal	0.005.00	Disturbed	28.00	27.92	
MC-CD5-TP-1	Main canal	1.10-5.00	Disturbed	32.16	27.65	
MC-CD6-TP-1	Main canal	1.50-5.00	Disturbed	18.93	28.26	
Main canal-1						
(MC-1)MC-01- CD -2	Main canal -1	1.60-4.00	Disturbed	43.66	23.99	
(MC-1)MC-01- CD -3	Main canal-1	1.10-5.00	Disturbed	54.39	23.57	

Table: 3-21: shear strength test

IX. Measures against Salt Attack

As stated by California Department of Transportation Materials Engineering and Testing Services Corrosion and Structural Concrete (2012) guidelines for corrosion a site is considered to be corrosive if one or more of the following conditions exist for the representative soil and/or water samples taken at the site: Chloride concentration is 500 ppm or greater, sulfate concentration is 2000 ppm or greater, or the pH is 5.5 or less.

Accordingly, the amount of both Sulphate and chlorides in the subsoil are generally small as observed from the laboratory test results (286.19 ppm & 70 ppm at main pump station and 13.03 ppm & 56.13 ppm at Booster station respectively). Hence, there is no risk of salt attack at both pump station sites.

3.1.2.3.5 Summary

The overall geotechnical investigations and laboratory tests conducted in this investigation are summarized as follows in the following table 3-22.

Geotechnical investigations carried out	Quantity
Test pit excavation	28
DCP in-situ test	10
Infiltrations test	14
Number of disturbed soil sample	27
Laboratory Tests	
Grain size distribution (sieve analysis)	25
Atterberg limits (LL, PL & PI)	25
Natural Moisture Content (NMC)	23
Specific gravity	2
	Mar. 004

Table: 3- 22: Summary of the geotechnical investigations carried out along Main Canal & Main Canal-1

Bulk unit weight	17
Free swell	15
Water absorption	2
Direct shear	12
Oedometer Consolidation	7
Standard compaction	2
Permeability	5
Sulphate	15
Chloride	15
Double Hydrometer	2

3.1.3: Findings from Geotechnical Investigation

3.1.3.1: Geotechnical Characterization of Subsurface Layer of canal routes using laboratory and field description

This chapter deals on comprehensive description and explanation of the outcomes of subsurface investigations by pitting and laboratory testing.

The surrounding area of the canals is covered by various quaternary sedimentary soils mainly alluvial deposits. 5layers are identified across the full length of the profile of Main Canal and for layers in the Main canal-1, having sub parallel and sub horizontal attitude. As depicted in the profile, the thicknesses of the layers vary; some layers are continuous along the canal line. The detailed descriptions soil layers are presented as follows and fig 3-2 -3-4 & Appendix-A-1.The classifications to obtain geotechnical layers have revealed from the qualitative information were obtained in the field by visual inspection. It constitutes the basis for preparing the test pit logs or other records that describe the succession of strata in the underground. The quantitative information was obtained by means of laboratory and field tests and the layers that are constitutes the project area can be summarized as follows;

I. Layer-I Clayey fine Sand unit (ML)

The unit is exposed in the main canal from CH: 0+000 to 1+677km having 0.0-5.0m thickness, from CH:1+677km to 4+175km at depth of 2.10-5.0m, from CH:4+175km to 4+775km at depth of 2.80-5.0m, from CH:4+975km to 5+523km at depth of 2.10-5.0m along the profile section. The geotechnical parameters that are typical of the average behavior of the unit are as follows:

Unit weight (loose) $(Y_n) = 10.49-14.21$ KN/m³

SPT blow count Nspt= 22-30.5

Effective cohesion c' = 15-48.33kPa

Effective shear strength angle pia'= 18-26 $^{\circ}$

Permeability coefficient k = $2.9*10^{-2}$ & $9.61*10^{-6}$ cm/s for the depth of 0.0 to 3.0m &3.10 - 5.0m of the test pits respectively.

II. Layer-II Dark brown sandy Clay unit (CL)

The unit is exposed in the main canal at CH: 1+677 to 4+174 km at depth range of 0.0-2.10m CH:4+174 - 4+775 km at depth range of 1.0-2.80m, from CH:4+975km to 5+523km at depth of 0.0-2.10m depth and from CH: 10+239 - CH: 11+338km having 0.0-1.70m thickness along the profile section. The geotechnical parameters that are typical of the average behavior of the unit from literature review are as follows:

Unit weight $(\gamma_n) = 12.5 - 17.5 \text{KN/m}^3$

Permeability coefficient k = 10^{-10} - 10^{-8} cm/s

III. Layer-III: gravelly Sand unit (SP)

The unit is exposed the main canal at CH: 4+175 to 4+776 km, at depth of 0.0 -1.0m, from CH:5+524 to CH: 8+094 at depth of 0.0-5.0m, CH: 8+095 to 10+238 km having 2.60-5.0m depth and from CH:10+239 to 11+338km with 1.70 to 3.0m thickness along the profile section. The geotechnical parameters that are typical of the average behavior of the unit are as follows:

Unit weight (loose) $(\gamma_n) = 13.13$ KN/m³

SPT blow count Nspt= 15-20.5

Effective cohesion c'=28-kPa

Effective shear strength angle pia' 27.9°

Permeability coefficient k = 10^{-4} to 10^{-2} cm/scm/s

IV. Layer-IV: Silty Sand unit (SM)

The unit is exposed in the top most layers at the main canal at CH: 8+096 to 10+238km at 0.0-2.60m depth and 11+338 to 13+140 and main canal-1 from CH: 0+00 - 4+800km average depth of 0.0-1.50m. It is Reddish brown, fine grained, dry, low plasticity. The geotechnical parameters that are typical of the average behavior of the unit are as follows:

Unit weight $(Y_n) = 12.5-21 \text{KN/m}^3$

Permeability coefficient $k=10^{-7}-10^{-5}$ cm/s

V. Layer-V: Reddish brown Clayey Sand unit (SC)

The unit is exposed at the main canal at CH: 4+776 to 4+974it is dark brown, fine grained, stiff, and medium plastic, 0.00-5.0m thick and the geotechnical parameters that are typical of the average behavior of the unit are as follows:

Permeability coefficient k=.4.4*10⁻⁴

3.2 Pump Station

3.2.1 General

Exploration requirements for the foundations of Pump station depend up on the size and load of the structure; and the character of the ground were the pump station will sit. In the face of the size of the proposed pump station sets with pump house and pipes are relatively massive to require geotechnical considerations a general assessment on the geotechnical conditions of the project proposed pump site is carried out through test pit, sampling and in-situ & laboratory testing.

The objective of the investigation was to identify potential geotechnical conditions in subsurface, which could affect the bearing conditions of the pump site. Accordingly, the site investigation also attempts to foresee and provide against difficulties that may arise during and after construction because of ground and/or other local conditions. The specific objects include:

• Assessing allowable bearing capacity via DCP test and laboratory shear strength parameter

Since soils of different origin and history exhibit different geotechnical natures with respect to the parameters, the general geological-geotechnical condition of the area is believed to govern the parameters used in assessing the potential problems on the site.

3.2.1 Methodology

3.2.1.1 Test Pitting

Test pits with surface area 1.5mx1.5m x 5.0m were manually dug at two points in the previous proposed pump station-1 (near Korcho Village) and one in pump station-2 area. The test pits were dug by equipment such as, row bar, Hoe, pickaxes, and shovel. A steel ladder is lowered to the bottom of the pit for detailed logging of the various soil horizons and collecting representative samples for visual description. Upon completion of documentation and sampling, the test pit is photographically documented using digital camera followed by backfilling of the pit by the excavated material. A total of two test pits for pump station-1 were manually dug, relevant information pertinent to the test pits are presented in the profile section.

3.2.1.2 Sampling

During the previous investigation due to the difficulty of access to the foundation level, we were forced to take samples from test pits of the Korcho site soil formation and subsequent visual description are taken to determine the preliminary engineering properties. However, currently excavation works are commenced at the main pump station site which created access to some portion of pump site foundation area. To further characterize the site three soil samples were collected above foundation level and conducted laboratory test.

Table: 3-23 summary table of investigation

Structure name	Number of Test pits	Number of Disturbed Samples
Pump station-1 and -2	4	10
Main Pump Station	From excavated face	3

3.2.1.3. In Situ DCP Tests

Dynamic Cone Penetrometer tests were conducted inside test pits at a depth of 0.0m (surface), 1.5m, and 3.0m for the Pump station-2 (Booster) site and for Pump station-1(Korcho Site) at a depth of 1.0m and 1.73m to determine the resistance of various soil horizons underlying the pump station Sites. A total of four DCP tests were conducted in both pump station sites at the surface and covered by soils inside test pits in order to determine the resistance of these soil horizons. For the main pump station site the analysis was undertaken by using shear parameters alone.

The statistical average values of the penetration are used for calculating the SPT-Values using the relation in equation (1-5) below. The average DCP value of each layer is converted in to SPT-N values, using the relation suggested by a user guide of Minnesota Department of Transportation (Mn/DOT):

Equation: 1- 5.....SPT= 240.17 DCP^{-0.967} Where SPT= Standard Penetration Test number of blows (N values)

DCP=adjusted dynamic cone penetration result in mm/blow for a given soil layer

Converted SPT N-values are corrected for moisture and considered for computation of the bearing capacity. Design SPT- N values of soils layers below ground obtained from dynamic cone Penetration Data are presented below in table 3-24.

No.	TP ID.	Depth (m)	DCP Value	SPT N value/ 300mm	Adjusted SPT N-value
1	PS-2-TP-1	0.0-1.49	15.7	17	16
2	P3-2-1P-1	1.50-2.13	9.8	26	20.5
3	PS-1-TP-1	1.0-1.73	9	29	22
4	F0-1-1F-1	1.73-2.62m	5.5	46	30.5

Table: 3- 24 Summary of DCP result of pump stations

3.2.1.4. Laboratory test results of soil layers

Disturbed soil samples from the depths 0.0 to 5.0 meters of test pits of PS-2 (Booster Site) and 0.0-2.40, 3.4-7.4 & 7.4-10.40 m from main pump station site from surface excavation exposure were taken for laboratory testing. Taking undisturbed samples from the test pits and surface is not possible because of the dense and dry nature of the formation. The laboratory results are summarized in the following table.

					, In al - a	diatribu	tion		arbara				Direct	Shear			Chem	ical
ТР	Sam	Sampl e	Unit	Gra	in size (distribu	uon		erberg	Limits	Free				Cons	Permeability	Sulphate	Chlori de
ID	ple type	Depth (m)	weight (gm/cc)	San d (%)	Silt (%)	Clay (%)	Fine (%)	LL (%)	PL (%)	PI (%)	Swell (%)	NMC (%)	C (KPa)	f (Deg.)	o. Cc	(cm/sec)	(meq/l)	(meq/l
2	BDS	0.0- 5.0	1.12								47.50		48.33	18.00	0.246		8.48	10.36
PS-1-TP1	SDS	0.0- 2.50		65.8	25.9	8.3	34.1 8	22.8 9	NP			4.89						
⁸	SDS	2.5- 5.0		30.4	48.4	21.2	69.5 8	31.8 6	20.7 0	11.16								
	BDS	0.0- 5.0	1.07								42.50		15	26	0.19		5.72	8.96
-TP2	SDS	0.0- 1.30		41.2 8	43.2 2	15.5 0	58.7 2	27.0 1	17.4 9	9.52		5.14						
PS-1-TP2	SDS	1.3- 3.0		36.3 6	48.3 5	15.2 9	63.6 4	29.0 5	24.2 2	4.83		8.47						
	SDS	3.0- 5.0		24.4 4	47.7 5	27.8 1	75.5 6	39.4 8	22.3 3	17.15		16.45						
du	BDS	0.0- 2.40	1.172	9.11	35.9 2	54.9 7	90.8 9	49.2 9	28.8 6	20.43	57.50	13.9	21.69	19.72				
Main Pump stat.	BDS	3.4- 7.4	1.284	4.45	69.9 1	25.6 4	95.5 5	69.2 0	30.5 2	38.68	110	21.03	48.52	11.38		1.89*10-8		
Ma	BDS	7.4- 10.4	1.84	70.4 2	18.2 0	11.3 8	29.5 8	21.0 3	20.2 1	0.82	10.00	10.83	49	28.14		2.52*10-6	5.71	1.4

Table: 3- 25 Summary of Laboratory Test Results from disturbed Samples

Table: 3-26: Summa	y of Laboratory 7	Fest Results from	disturbed Sample	s Booster site
--------------------	-------------------	--------------------------	------------------	----------------

											Att	erber	g			Direct			Cher	nical
		Locati	. .		Unit	Gra	ain size	e distr	ibutio	n	L	imits	•	Fre		Sh	ear			
	TP ID	on of Test	Sample	Samp	weig		-	Sil			LL	PL	PI	е	NM	-	-		Sulph	Chlori
		pit	type	le Denth	ht	Grav	San	t	Cla	Fin	(%)	(%	(%	Sw	C	C	f	Cons	ate	de
N 0		P.1		Depth (m)	(gm/c c)	el (%)	d (%)	(%	y (%)	e (%)))	ell (%)	(%	(KP a)	(Deg	о. Сс	(meg/l)	(meg/l)
				· · ·	- 0)	(70)	(70))	(70)	(70)				(70)		/	.)	00	(meq/i)	(meq/i)
				0.0-												42.3	29.4			
1			BDS	5.0	1.57									0.0		3	5	0.190	0.26	1.12
	PS-2-	Booste		1.20-			73.	5.4	0.0		26.	N								
2	TP1	r	SDS	3.0		21.00	54	6	0	5.5	10	P			0.37					
	7			3.0-			94.	5.4	0.0		26.	Ν								
3			SDS	5.0			53	7	0	5.5	40	Р								

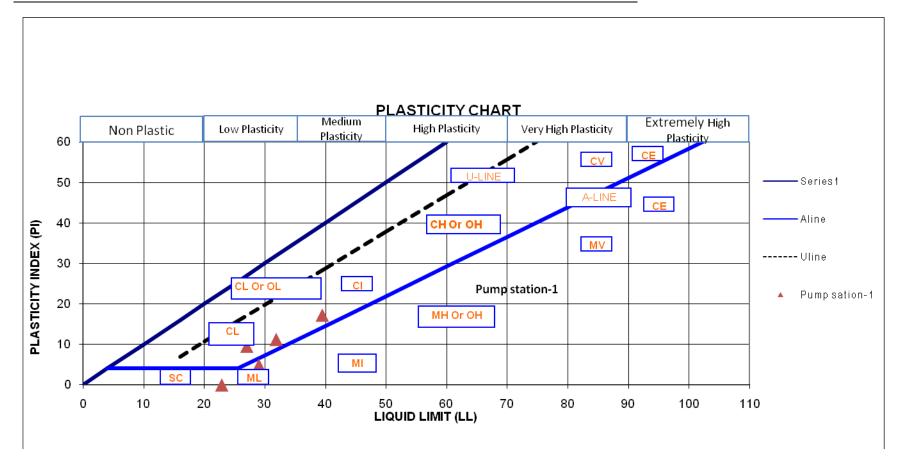


Figure: 3-4: Omo valley Pump station-1 (Korcho Site) soil Samples

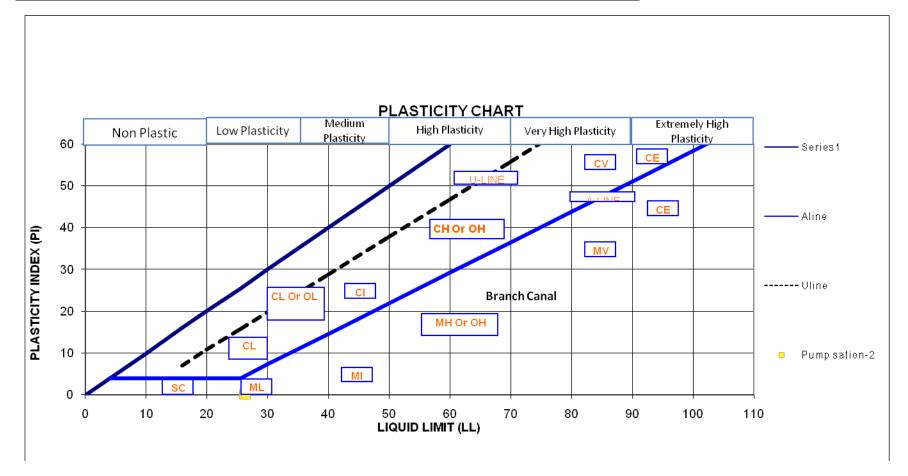
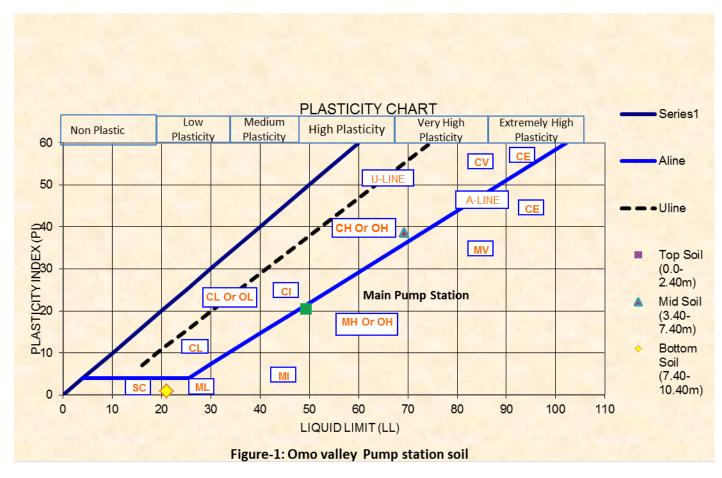
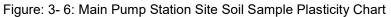




Figure: 3- 5: Omo valley Pump station-2 (Booster Site) soil Samples

3.2.2. Geotechnical finding

The subsurface geology is sub-divided into various geotechnical layers based on visual description and in situ (DCP) test results. Based on this geotechnical characteristic the sub-surface geology is sub-divided into the following quasi-homogeneous geotechnical layers.

Main Pump Station Soil Layers

In this station two soil layers are identified and described as follows:

Layer-1 Clayey silt (MH)

The unit is exposed in the main pump station site and can be described as reddish brown, inorganic, highly plasticity, dry, stiff having 0.0 m to 2.40 m thickness at excavation face. The geotechnical parameters that are typical of the average behavior of the unit are as follows:

Unit weight (loose) $(\gamma_n) = 11.5/m^3$

Effective cohesion c'- 21.69kPa

Effective shear strength angle ¢' -19.72 °

Layer-2 Organic Clay (OH)

The unit is exposed in the main pump station site and can be described as dark brown, inorganic, highly plasticity, dry, stiff having 3.4m to 7.40m thickness in the excavated face. The geotechnical parameters that are typical of the average behavior of the unit are as follows:

Unit weight (loose) $(Y_n) = 12.6 \text{KN/m}^3$

Effective cohesion c' -48.52 kPa

Effective shear strength angle^{ϕ}'-11.38° Permeability (cm/sec) =1.89*10⁻⁸

Layer-3 Clayey Silty Sand (ML)

The unit is exposed in the main pump station site and can be described as Reddish brown, inorganic, low plasticity, dry, stiff having 7.4m to 10.40m thickness in the excavated face. The geotechnical parameters that are typical of the average behavior of the unit are as follows:

Unit weight (loose) $(Y_n) = 18$ KN/m³

Effective cohesion c' -48.97 kPa

Effective shear strength angle^{ϕ}'-28.14° Permeability (cm/sec) = 2.52*10⁻⁶

Photo: 3- 1 View of main pump station site

Pump Station-2 (Booster Site) Soil Layers

Layer-1 silty sand (SM)

The unit is exposed in the pump station-2 site and can be described as light brown-grayish, nonplasticity, dry, loose, with having 5m thickness within the test pit. The geotechnical parameters that are typical of the average behavior of the unit are as follows:

Unit weight (loose) $(Y_n) = 15.4 \text{ KN/m}^3$

SPT blow count Nspt= 16-20.5

Effective cohesion c' = 42.33 kPa

Effective shear strength angle pia'= 29.45°

Photo: 3- 2 View of test pits on proposed pump station-2 (Booster Site).

4 BEARING CAPACITY ANALYSIS

4.1 General

The Selection of a particular type of foundation depends on the magnitude and nature of the subsurface strata, the structural loads, the type of the superstructure and its specific requirements. In terms of their founding depths within subsurface are normally categorized as shallow and deep (pile) foundations. Shallow foundation is the first logical choice of a foundation unless it is considered inadequate for different reasons.

The allowable bearing pressure is the maximum net intensity of loading that can be placed on the soil without any shear failure or the risk of excessive settlement. It is therefore, the smaller of the net safe bearing capacity (shear failure criterion) and the safe bearing pressure (settlement criterion) that has to be considered. Consequently, taking in to account the material properties of the project sites, the foundation ground need to be analyzed taking or considering their strength and engineering characteristics.

A uniform settlement is usually of little consequence in buildings, but a differential settlement can cause severe structural damages.EBCS-7 (1995) recommends permissible total settlements of 50mm and 75mm on sandy and clayey soils, respectively. Differential settlements between adjacent columns up to 20mm are acceptable. In calculation of the allowable bearing capacities of the soils both the total and differential settlement values have estimated to be within tolerable limits (25mm). Therefore, the calculated allowable bearing pressures are including the settlement criteria.

The determination of allowable bearing pressures is discussed based on the strength of the sub-surface formations from in situ test results. Field observation and measurements on different soil layers are the main data used in the analysis of the allowable bearing pressures of the foundations.

After adjusting the N-values based on the above formula, the design N-values are used to determine the allowable bearing capacities of soil layers at each foundation site.

Raft Foundations: According to Meyerhof (1965)], for a raft foundation, when the bearing capacity is based on penetration tests (e.g., SPT, CPT) in cohesionless soils such as sands and sandy gravel, one may use the following equation to calculate the allowable bearing capacity by limiting the tolerable settlement (Bowles, 1996): -

Spread Foundations: The design N values are calculated as the average of N values which are found between ½ B above and 2B below the footing depths. The design SPT N values are used to determine the bearing capacities on each site according to Meyerhof's equation (Bowles, 1996):

Equition:1- 7.....qall = N/F2 [(B+F3)/B)]2kd **B>F4**

Where qall = Allowable bearing pressure for settlement limited to 25 mm.

Kd = 1+0.33D/B < 1.33 F2 = 0.08; F3 = 0.3; F4 = 1.2 B = Width of foundation;D = Depth of foundation

To be conservative on the results, allowable bearing pressures are calculated for foundation widths equal to assumed foundation depths-geotechnical layer depth- below the ground level for settlement limited to 25mm. Foundation width is, thus can a significantly be selected greater than the given foundation depth but less than the depth is not allowed.

However, the unconfined compressive strength can be estimated from the SPT N' value and the results of the unconfined compressive strength obtained from undisturbed soil samples. Bowles (1997, 5th Edition) gives an empirical correlation between N' value and unconfined compressive strength that can be estimated by the following relation.

Equation: 1- 8.....qu = K*N'

K = 12 for SI unit

And other relation can obtained from Sower's graphs uses Cu =4N for high plasticity clays and increasing to about 15N for low plasticity clays. – Contrast with Stroud and Butler's (1975) graph which shows Cu=4.5N for PI>30%, and increasing to Cu=8N for low plasticity clays (PI=15%).

However on the basis of this, Construction Industry Research Information Association Report No. 143, SPT Methods and Use 1995, Stroud suggested that N value in cohesive soil is not only a function of Undrained shear strength (C_u) but also it has a relationship with Plasticity Index (PI). The plasticity of the foundation soil, anticipated to form the seat of structural footings varies

from 12 – 38%. Accordingly for such soils, K value of 4.75 is considered as the most appropriate to correlate the N' values with that of their equivalent un-drained shear strength. Table 3-27 below is the summary of q_u derived from N' VS q_u (= 2C_u) relationship.

TP ID.	Depth (m)	PI%	N'	SPT Cu (N' * 4.75)	applied formulas
	0.0-1.49		16		
PS-2-TP-1	1.50-2.13		20.5		
	1.0-1.73		22	104.5	
PS-1-TP-1	1.73-2.62	11.16-17.15	30.5	144.875	Stroud
MC-CD3-TP1	0.0-0.75		20.5	246	
	0.0-0.62		20.5	97.375	
MC-CD4-TP1	1.6-2.4		15	71.25	
	1.5-2.80		10	47.5	
MC-CD5-TP1	2.80-3.57		14	66.5	
MC-CD7-TP1	0.0-0.68	6.73-18.83	18	85.5	Stroud
	0.0-0.73		16.5	247.5	
MC-01-CD-3	1.50-2.25		11.5	172.5	
MC-01-CD-2	0.0-0.73		39	585	
MC-01-CD-7	0.0-0.67	6.16-10.45	22	330	Sower's graphs

Table: 3- 27: Summary of qu derived from N VS qu relationship for different depth

In addition to the above analysis, the bearing capacity analysis were done through Terzaghi and Vesic presented the general bearing capacity theory for increasing the computation value more precise, with the ability of the soil to accept this load dependent on:

- The soil properties cohesion (c), angle of friction (φ) and unit weight (γ).
- The footing geometry embedment (D_f) and width (B).
- Surcharge (q) resisting movement= γD_{f} .
- Modifications of the above relationship occur for:
 - Water table.
 - Shape, depth and inclination factors.
 - Soil layering.
 - Adjacent to slopes.

Consideration	Cohesion	Embedment	Unit weigh	nt	Comments
Bearing capacity factors	Nc	Nq	Νγ		These factors are non-dimensional and depend on φ . See next Table
	a Na I	a Nat	0.51	D	
Ultimate bearing	c Nc+	q Nq+	0.5γ	В	Strip footing
capacity (qult)	1.3 c Nc+	qNq+	Νγ		Square footing
	1.3 c Nc+	q Nq+	0.4γ	В	Circular footing
			Νγ		
			0.3γ	В	
			Nγ		

Table: 3- 28 Bearing capacity equation.

Finally, the final recommended result of the analyses were done by averaging the result of the following three equations; Terzaghi and Vesic equation and Meyerhof's equation.

Accordingly the allowable bearing capacity shown in Table below is computed as,

Equation: 1- 9.....qa = qu-net /Sf

Where, Sf is Safety factor = 3

Safe Bearing capacities have been determined for footing widths of 2 – 6.0m with an increment of 0.5m for footing depths of 2 to 4m and the increment become1m that is for the next depths 5, and 6 meters for the Booster site and Canal Cross Drainage Structure sites. However, for Main Pump Station Site allowable bearing capacity have been determined considering footing width of 12m and length of 60m and with increments of 0.5 m for footing depths 1 to 4.0m and by considering the rectangular shape of mat foundation. Consequently, the results for pump station and canal structure sites are presented on Table 3-29 so as to select the appropriate Safe Bearing capacity with different footing width, B and depth, D.

Table: 3- 29: Summary of bearing capacity result of Main Pump Station site

		Over Burden			
Structure Id.	Depth (m)	Υ _{Bulk} , KN/m ³	C, Kpa	Phi (degree)	q _{a,} Kpa, Vesic
			B = 12m	ı	
	1	18.032	48.97	28.14	794.1
	1.5	18.032	48.97	28.14	826.0
Main Pump	2.0	18.032	48.97	28.14	858.5
Station	2.5	18.032	48.97	28.14	891.5
	3.0	18.032	48.97	28.14	925.2
	3.5	18.032	48.97	28.14	959.3
	4.0	18.032	48.97	28.14	994.1

					station_2		33	
Structure/ Cross Drain Id.	Depth (m)	Over Burden (Loose) Ƴ _{Bulk} , KN/m ³	C, KPa	Phi (degree)	q _{a,} KPa, Vesic	q _{a,} KPa, Terzaghi	qa, KPa, DCP-SPT Correlation Meyerhof's	q _{a,} KPa, Average
	B = 2m							
	2.5	15.4	42.33	29.45	1067.0	777.2	426.1	756.8
	3	15.4	42.33	29.45	1125.3	796.9	451.0	791.1
	3.5	15.4	42.33	29.45	1179.3	816.5	475.9	823.9
	4	15.4	42.33	29.45	1230.0	836.2	500.8	855.7
	5	15.4	42.33	29.45	1324.6	875.5	550.6	916.9
	6	15.4	42.33	29.45	1413.1	914.8	600.4	976.1
	B = 3m							
	2.5	15.4	42.33	29.45	1059.9	791.0	384.7	745.2
	3	15.4	42.33	29.45	1142.1	810.6	401.3	784.7
	3.5	15.4	42.33	29.45	1131.7	830.3	417.8	793.3
	4	15.4	42.33	29.45	1184.1	849.9	434.4	822.8
	5	15.4	42.33	29.45	1282.7	889.2	467.6	879.9
	6	15.4	42.33	29.45	1375.2	928.5	500.8	934.9
	B = 4m							
	2.5	15.4	42.33	29.45	1009.5	804.7	363.9	726.1
	3	15.4	42.33	29.45	1077.5	824.4	376.4	759.4
Pump Station-2	3.5	15.4	42.33	29.45	1147.3	844.0	388.8	793.4
	4	15.4	42.33	29.45	1218.9	863.7	401.3	827.9
	5	15.4	42.33	29.45	1249.4	903.0	426.1	859.5
	6	15.4	42.33	29.45	1343.4	942.3	451.0	912.2
	B = 5m	•				•	•	
	2.5	15.4	42.33	29.45	983.9	818.4	351.5	718.0
	3	15.4	42.33	29.45	1043.4	838.1	361.4	747.6
	3.5	15.4	42.33	29.45	1104.2	857.7	371.4	777.8
	4	15.4	42.33	29.45	1166.6	877.4	381.3	808.4
	5	15.4	42.33	29.45	1295.7	916.7	401.3	871.2
	6	15.4	42.33	29.45	1317.7	956.0	421.2	898.3
	B = 6m							
	2.5	15.4	42.33	29.45	970.7	832.2	343.2	715.4
	3	15.4	42.33	29.45	1024.5	851.8	351.5	742.6
	3.5	15.4	42.33	29.45	1079.4	871.5	359.8	770.2
	4	15.4	42.33	29.45	1135.6	891.1	368.1	798.3
	5	15.4	42.33	29.45	1251.6	930.4	384.7	855.6
	6	15.4	42.33	29.45	1372.5	969.7	401.3	914.5

Table: 3- 30 Summary of bearing capacity result of Pump station_2 (Booster) sites

Structure/ Cross Drain Id.	Dept h (m)	Over Burden (Loose)Υ _{Bulk} , KN/m ³	C, KPa	Phi (degree)	q _{a,} KPa , Vesic	q _{a,} KPa, Terzagh i	qa, KPa, DCP-SPT Correlatio n Meyerhof's	q _{a,} KPa, Averag e
Width, $B = 0.5r$,	i tti a)	, vesic	•	meyerner 3	•
	0.5	12.8	9.93	30.42	257.2	181.7	872.5	437.1
	1.0	12.8	9.93	30.42	285.0	193.5	1089.0	522.5
	1.5	12.8	9.93	30.42	316.5	205.3	1305.4	609.1
MC-CD3-TP1	2.0	12.8	9.93	30.42	343.8	217.1	1521.9	694.3
Width, B = 0.5r		1		1	1	1	1	1
	0.5	13.1	28	28	548.4	396.6	766.08	570.3
	1.0	13.1	28	28	581.5	406.4	956.16	648.0
	1.5	13.1	28	28	621.0	416.1	1146.24	727.8
MC-CD4-TP1	2.0	13.1	28	28	650.8	425.9	1336.32	804.4
B = 0.5m	1		00.4	1	1	1	1	
	0.5	12.5	32.1 6	27.65	608.0	441.0	532	527.0
	0.5	12.5	32.1	21.00	000.0	441.0	552	527.0
	1.0	12.5	6	27.65	448.8	639.5	664	584.1
			32.1					
	1.5	12.5	6	27.65	456.5	677.8	796	643.4
MC-CD5-TP1	2.0	12.5	32.1 6	27.65	705.2	464.3	928	699.1
B = 0.5m	2.0	12.0	0	21.00	100.2	00	520	000.1
2 0.011			18.9					
	0.5	13.23	3	28.26	278.7	386.6		332.6
			18.9					
	1.0	13.23	3	28.26	289.2	415.9		352.5
	1.5	13.23	18.9 3	28.26	299.7	450.2		374.9
	1.0	10.20	18.9	20.20	200.1	400.2		074.0
MC-CD6-TP1	2.0	13.23	3	28.26	310.1	477.7		393.9
B = 0.5m					•		•	
	0.5						766.08	766.1
	1.0						956.16	956.2
	1.5						1146.24	1146.2
MC-CD7-TP1	2.0						1336.32	1336.3
B = 0.5m	1	I	1		1	1	1	1
	0.5	10.10	43.6	22.00	600.0	440 7	1650.04	903.4
	0.5	13.13	6 43.6	23.99	600.6	449.7	1659.84	903.4
	1.0	13.13	6	23.99	629.2	456.1	2071.68	1052.3
			43.6					
	1.5	13.13	6	23.99	664.5	462.4	2483.52	1203.5
		10.10	43.6	00.00	000.0	400 7	0005.00	4054 0
MC-01-CD-2	2.0	13.13	6	23.99	688.9	468.7	2895.36	1351.0
B = 0.5m			54.3		[
MC-01-CD-3	0.5	11.9	54.5 9	23.57	716.3	538.6	595.84	616.9

Table: 3- 31 Summary of bearing capacity result of Cross Drain structure sites

Water Works Design and Supervision Enterprise

May, 2015

Structure/ Cross Drain Id.	Dept h (m)	Over Burden (Loose)Y _{Bulk} , KN/m ³	C, KPa	Phi (degree)	q _{a,} KPa , Vesic	q _{a,} KPa, Terzagh i	qa, KPa, DCP-SPT Correlatio n Meyerhof's	q _{a,} KPa, Averag e
			54.3					
	1.0	11.9	9	23.57	744.4	542.5	743.68	676.9
			54.3					
	1.5	11.9	9	23.57	780.0	546.3	891.52	739.3
			54.3					
	2.0	11.9	9	23.57	802.5	550.1	1039.36	797.3
B = 0.5m								
			54.3					
	0.5	13.5	9	23.57	721.7	542.3	936.32	733.4
			54.3					
	1.0	13.5	9	23.57	754.6	549.0	1168.64	824.1
			54.3					
	1.5	13.5	9	23.57	795.4	555.8	1400.96	917.4
			54.3					
MC-01-CD-7	2.0	13.5	9	23.57	823.1	562.5	1633.28	1006.3

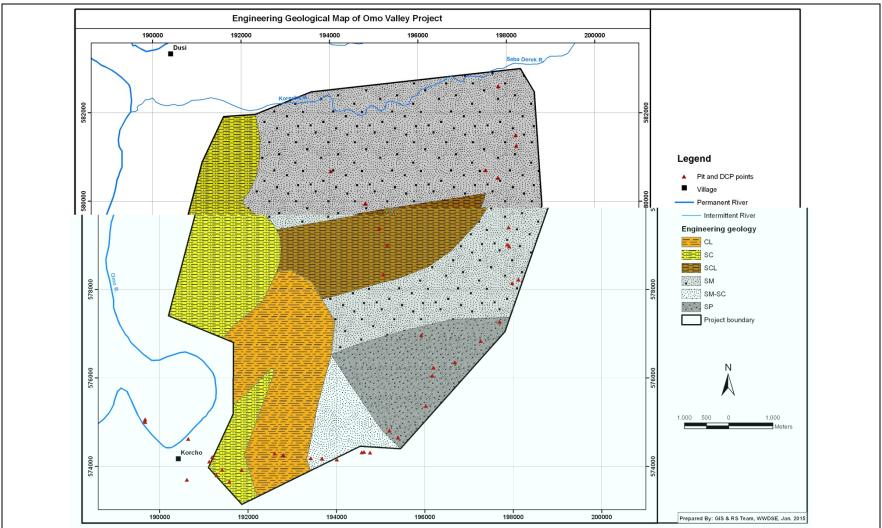


Figure: 3-7: Engineering Geological map of the site.

Figure: 3-8: Longitudinal Geological Cross Section (Subsurface Profile) of Main Canal

Figure: 3-9: Longitudinal Geological Cross Section (Subsurface Profile) of Main Canal-1.

5. CONCLUSION & RECOMMENDATIONS

5.1 Conclusion

Geotechnical investigation works have been carried out at Omo Valley Farm Irrigation Project. The project sites included in the investigation are: the proposed canal alignment and pump stations. The investigation was composed of test pitting and visual descriptions, DCP field testing, Infiltration test works and sample collections. Laboratory testing was also conducted to obtain index properties (grain size analysis and Atterberg limits) and engineering properties (compaction (maximum dry density), optimum moisture content, free swell, direct shear and chemical test (i.e. Sulphate and chlorides) of the soil samples collected.

Based on field descriptions and laboratory index test results, the following geotechnical soil units are identified along the main canal; these are: Clayey fine Sand unit (ML) are exposed from CH: 0+000 to 1+677km having 0.0-5.0m thickness, from CH: 1+677km to 4+175km at depth of 2.10-5.0m, from CH: 4+175km to 4+775km at depth of 2.80-5.0m, from CH: 4+975km to 5+523km at depth of 2.10-5.0m; Sandy Clay unit (CL) are exposed at CH: 1+677 to 4+174 km at depth range of 0.0-2.10m CH:4+174 - 4+775 km at depth range of 1.0-2.80m, from CH: 4+975km to 5+523km at depth of 0.0-2.10m CH:4+174 - 4+775 km at depth range of 1.0-2.80m, from CH: 4+975km to 5+523km at depth of 0.0-2.10m depth and from CH: 10+239 – CH: 11+338km having 0.0-1.70m thickness; gravelly Sand unit (SP) are exposed from CH: 4+175 to 4+776 km, at depth of 0.0 -1.0m, from CH:5+524 to CH: 8+094 at depth of 0.0-5.0m, CH: 8+095 to 10+238 km having 2.60-5.0m depth and from CH:10+239 to 11+338km with 1.70 to 3.0m thickness; Silty Sand unit (SM) are exposed from CH: 8+096 to 10+238km at 0.0-2.60m depth and 11+338 to 13+140 at depth of 0.0-3.0m and as well as main canal-1 from CH: 0+00 – 4+800km average depth of 0.0-1.50m and Clayey Sand unit (SC) also exposed from CH: 4+776 to 4+974. It is dark brown, fine grained, stiff, medium plastic, 0.00-5.0m thickness.

At the main pump station site three layers are identified these are: inorganic silt of high plasticity (MH), Organic clay of high plasticity (OH) and inorganic Clayey silty sand with low plasticity (ML) whereas at the Pump Station-2 one geotechnical layer, i.e. silty sand (SM) is identified.

According to the data given in Table 3.15 the dominant grain size of the soil layer along the main canal is fine (ranging from 3.8-48.88% with average of 28.4% silty and clay). The Atterberg limit of this soil indicates LL of 27.8% (on average) and PI (consistency index) of 4% on average which is considered low value. In general, the lower the plasticity index the lower engineering problems associated with the use of the soil as foundation material. This notion has

been also reflected on the expansiveness and shrinkage of the layer. The linear shrinkage and Atterberg limits have indicated shrinkage with noncritical degree of severity while swelling potential of the Silty CLAY deposit shows low degree of expansion.

The data obtained from the field and laboratory engineering property test results was processed and accordingly analyses were made on the parameters corresponding to required engineering performance of the investigation sites of the pump stations: having the shear strength parameter of c:48.97, f: 28.14 degree and c:42.33, f: 29.45 degree for main pump station & PS-2 sites respectively. The free swelling condition of both sites is less than 50%.

The first 4.974km of main canal (Chainage: 0+000 to 4+974km), CH:5+524 to 8+094km and the canal route from Chainage:8+095km to 10+238km will be excavated through high to medium pervious soils having hydraulic conductivity values in the range of 10-2 cm/sec to 10-4cm/sec.

The canal alignments from Chainage: 4+975km to 5+523km and 10+239 to 11+338km is characterized by the dark brown silty clay layer and is found to be impervious along the main canal having hydraulic conductivity values in the range of 9*10-6cm/sec to 10-8cm/sec.

However, the free swell result of the canal line range from 0.0 to 48.33% which implies that low expansiveness nature.

Regarding the main pump sites, however, the investigation were extends to the depth of 7-10m 372m elevation from the bank level 382 a.m.s.l by hand held GPS; however, the proposed structure foundation rests below this level. According to the investigation result, from the visual description three soil layers at main pump station site and one soil layer at the booster pump site were found to occur.

Soil Classification, and associated foundation characterizations for the excavated depth 7-10m are considered but the anticipated Engineering conditions for >11meter for the main pump station site, which is still below sampled level, would be estimated using the present investigation.

5.2 Recommendations

5.2.1 Canal Alignment

Based on the climatic, topographic and engineering geological characteristics of the project sites, geotechnical layers conditions which could have potential seepage on the canal line routes are anticipated. The evaluated ground conditions include: permeability, potential desperation, Potential corrosive effects and potential erosions.

Based on the investigation made along the main canal alignment and pump station the following recommendations are given:

- The chainage: 0+000 to 4+974km, 5+524 to 8+094km and 8+095km to 10+238km of the main canal being pervious required to be lined (possibly with the reddish brown silty clay soil found to occur at option- 1 borrow area).
- The dark silty clay at Chainage from: 4+975km to 5+523km and 10+239 to 11+338km is impervious but being medium expansive nature such soil will be problematic as water way, so covering it with compacted gravelly silt material is recommended.

5.2.2 Foundation

Assuming that the soils found to occur in excavated continue up to foundation depth, the following engineering recommendations can be made for pump station site. However, the final recommendation will be considered after direct data at foundation depth of main pump station is obtained from geotechnical core drilling and/or from excavation during construction stage.

Allowable Bearing Capacity

Foundation analyses were made to decide the appropriate foundation type, minimum depth of embedment and to propose the excavation method. Nature of the engineering geological units and the anticipated engineering performances of the ground materials were taken in to consideration together with proposed function of the structure and the maximum load it would carry, to suggest the appropriate foundation type and its depth of embedment.

The maximum allowable bearing pressure was analyzed based for the selected type of foundation for a tolerable settlement of 25mm. The Meyerhof equations for the different foundations, and using SPT-N values, were used for analyses of the maximum bearing pressure.

The field and laboratory data and results are analyzed and evaluations are made on the canal line, the foundation sites and construction material sources.

According to the bearing capacity analysis for foundation of main pump station the third layer would provide at least 794.1 - 994.1Kpa at depth of 1 to 4m and rectangular mat foundation width of 12m and length of 60m; and for PS-2 bearing capacity of 914.5 to 976 kPa at the depth of 6.0m depending on the mat pad width B=6m to B=2 which is considered adequate to accommodate the proposed pump with rather uniform load distribution.

Selection of Foundation

According to the nature and characteristics of the materials encountered in the Test pits, it is recommended to use stiffened mat foundation if the footing is designed on the alluvial clayey sand soil.

It is understood that a mat foundation is commonly used where the base soil has a low bearing capacity and/or the column loads are so large that more than 50 percent of the area is covered by conventional spread footings. Mat foundation is also used for deep basement foundation with both spread the column loads with a more uniform pressure distribution. Mat foundation can also be the floor slab for the basement and used to bridge over horizontal variation of the soil layer on the ground. Accordingly, stiffened /reinforced mat foundation is recommended at a depth of 6.0m below the existing ground level.

The decision whether to use mat foundation on the alluvial soil at a depth of 6m and below or pile foundation depends on the nature of the structure load distribution, subsurface drainage efficiency and obviously based on the cost analysis.

Drainage of Site

It is recommended to design an effective surface water drainage system as well as proper subsurface drainage facility to get rid of the consequences of the surface and infiltrated water into the foundation layers, mainly if the foundation footing is on the alluvial soil and the closeness of the structure to river. The site should be graded so as to direct surface water and lateral water flow if encountered during construction away from all planned structures.

Materials for Replacement, Backfill and Compaction Criteria

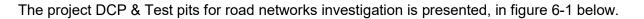
Replacing and back filling could be employed to improve the foundation conditions for the foundation footing on the alluvial soil. In general, materials for the backfilling should be granular, not containing rocks or lumps over 15 cm in greatest dimension, free from organic matter, with plasticity index (PI) not more than 10. The backfill material should be laid in lifts not exceeding 25 cm in loose thickness and compacted to at least 95 percent of the maximum dry density at optimum moisture content as determined by modified compaction test (Proctor) (ASTM D-1557).

Seismic Condition

According to seismicity hazard map of Ethiopia the site is located in Zone 4; therefore, being at zone 4 horizontal acceleration of 0.15g can be considered for design.

6.0 FARM ROAD GEOTECHNICAL INVESTIGATIONS

6.1 Introduction


The purpose of the investigation was to identify the geotechnical conditions of Omo valley farm project farm roads. The roads have been designed with irrigation design simultaneously.

In this report we discuss the findings of the geotechnical investigation of irrigation Road on the granular surface alignment extends from the approximate location of the Southern limits of a proposed pump site to Eastern then -northeast –northwest direction, approximately13.140 km of main canal & pipe line road, and also main canal-1 road stretched easterly-northerly approximately 4.8km.

The purpose of these services is to provide information and geotechnical engineering recommendations relative to:

- Pavement sub grade soil conditions
- recommended pavement sections

The recommendations contained in this report are based upon the results of field and laboratory testing, engineering analyses, and experience with similar geotechnical conditions and our understanding of the proposed project.

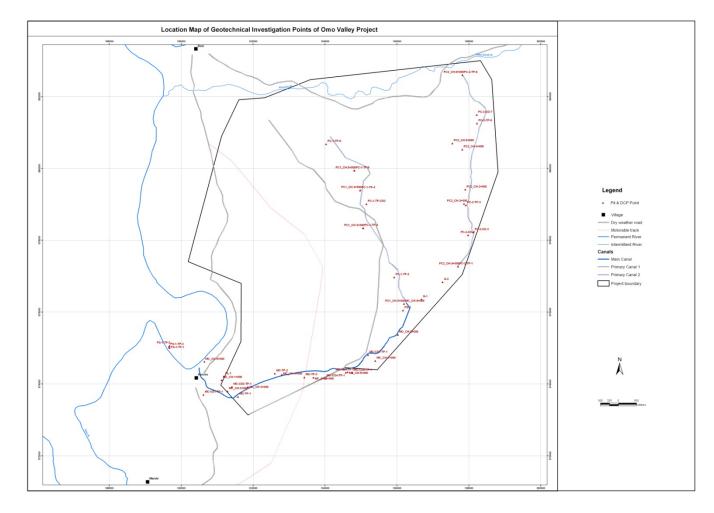


Figure: 6- 1DCP & Test pits. Location map

6.1.1 Scope of Work

The scope of the work includes the preparation of a geotechnical report for the project which involves the following specific tasks

- Geotechnical field soils investigation.
- Material sampling/laboratory testing
- In situ DCP Testing
- Test pits excavation and logging
- Analysis and interpretation of the test results

6.1.2 Existing Site Conditions

6.1.2.1 Native soils

Typically underlying the granular sub base is primarily dry sandy silt with gravel and trace clay. No sign of bedrock was found under the soil material along the canal line.

6.1.2.2 Groundwater Level

No groundwater inflow was encountered in the test pits.

6.1.1.3Terrain

The site is located in flat to rolling desert terrain with sparse vegetation consisting of grasses and shrubs. Numerous rock outcrops and monument features are visible in the eastern surrounding area of the farm land and in the west part of the farm adjacent to the roadway bounded by Omo River.

6.1.1.4 Climate

The project area has a high desert climate typified by low precipitation and great season ranges in temperatures. The average annual precipitation is 300mm, most of which occurs from March to May through June and September in the form of summer thunderstorms. The minimum temperature ranges from 19.7 ^oC in February to 21.1 ^oC in May with average of 20.4 ^oC. The lowest maximum is 38.8 ^o C in the month of July with average of 36 ^oC. The high temperatures are concurrent with the heaviest seasonal use of the farm Access Road.

6.2 Field Investigation

Techniques that was used for site investigation on the proposed roads are described in here

- Visual inspection and description of test pits along the proposed alignment,
- Use of dynamic cone penetrometer testing to assign uniform sections

- Use of visual inspection to assess the grading and plasticity of in-situ soils and borrow materials
- Sampling and
- Conducting laboratory tests like; Strength, compaction and othertypes of tests

6.2.1 Test pit logging and DCP Testing

There are about 22 tests pits have been excavated depth range of 3 to 5m along the canal alignment were it is used both for canal investigation and sub grade characterization and about 20 DCP test was conducted with 1km interval.

The locations of the test pit and DCP Test point are shown on the drawing titled "Test pit Location map" in fig.6-1. Logs of the test pits are shown in Appendix-A-1, DCP raw data, CBR summary tables, graphs are shown in Appendix-A-1 to A-4.

ID No.	Easting	Northing	Depth(m)
MC-CD1-TP-1	190620	573699	5.0
MC-CD3-TP-1	191414	573920	5.0
MC-CD4-TP-1	194009	574154	5.0
MC-CD5-TP-1	194577	574316	5.0
MC-CD6-TP-1	194763	574310	5.0
MC-CD7-TP-1	195198	574809	3.5
MC-TP-1	191580	573646	3.0
MC-TP-2	192606	574292	3.4
MC-TP-3	193424	574184	3.0
MC-TP-2	195924	576969	3.0
MC-TP-3	195057	578340	3.0
MC-TP-4	194976	579388	3.0
MC-TP-5	194818	579941	3.2
MC-TP-6	194030	580678	3.0
MC-TP-CD2	195153	579010	5.0
MC-01-TP-1	197695	577268	3.0
MC-01-TP-3	197914	578974	3.0
MC-01-TP-5	198226	581252	3.0
MC-01-TP-6	197821	582600	3.0
MC-01-CD-2	197977	578142	5.0
MC-01-CD-3	198123	578223	5.0
MC-01-CD-7	198220	581490	3.5

Table: 6- 1: Coordinates and drilled depth of Test pits

6.2.2 In situ DCP tests

Portable Dynamic Cone Penetration Test (DCP) was conducted inside all test pits. This equipment is composed of a standard hammer, weighing 8kg(17.6 pound) falling freely from a height of 575mm along a frictionless guide rod in accordance with test procedure mentioned in test No. 19 of BS 1377; 1975.

- ✓ A total of 20 tests were performed, in 1000m interval, in soils .The steel rule attached to the guide foot was placed through the slot in the hand guard. The foot was placed on the surface to be tested and the cone tip passed through the guide hole. The entire apparatus was then held by the handle perpendicular to the surface.
- ✓ The drop weight was raised to its maximum height and released. It gained maximum height for each drop but care was taken not to strike the weight against the handle; because doing so would cause the instrument to withdraw and results would be in question.
- ✓ The readings were taken with each blow of the weight. Where the penetration rate was below 20 mm/blow, the frequency of readings may be decreased to:
 - One for every two blows with readings from 10-20 mm
 - One for every five blows with readings from 5-9 mm
 - One for every ten blows with readings from 2-4 mm.
 - Penetration depth less than 1 mm and exceeding 20 blows is considered as refusal.
- ✓ The test depth was determined by to be where test refusal occurs or where the instrument was believed to penetrate a considerable depth through the natural ground below the fill.

Penetration depths for each blow counts are recorded .The records are classified in to zones and averaged to one representative values based on layer identification made on charts. Detail of DCP test records are presented in Appendix-A-2 to A-4.

ld. No.	Easting	Northing	ld. No.	Easting	Northing		
MC_CH:0+000	190646	574622	PC2_CH:0+000	197695	577268		
MC_CH:1+000	191124	574109	PC2_CH:2+000	197865	579015		
MC_CH:2+000	191288	573798	PC2_CH:3+000	197900	579410		

Table: 6- 2Coordinates of DCP Test

ld. No.	Easting	Northing	ld. No.	Easting	Northing
MC_CH:3+000	191857	573918	PC2_CH:4+000	197816	580526
MC_CH:4+000	192797	574259	PC2_CH:5+000	197539	580697
MC_CH:5+000	193678	574177	PC2_CH:6+000	197821	582600
MC_CH:6+000	194628	574330	PC1_CH:0+000	196196	576231
MC_CH:7+000	195396	574645	PC1_CH:3+000	195061	578336
MC_CH:8+000	196024	575371	PC1_CH:4+500	194978	579394
MC_CH:9+000	196196	576231	PC1_CH:5+000	194811	579942

6.2.2.1. California Bearing Ratio (CBR)

For pavement design, soil properties at sub grade level are required. It is recommended that DCP test from the designed sub grade level should be conducted for CBR evaluations. This is considered appropriate for design purpose. The number of DCP tests required will very much depend on the uniformity of the sub grade soil. From the logging information, the site engineering geologist decided to do DCP tests for 1000m interval along the canal alignment.

Summary of the CBR strength test results from DCP test along the road network within the command area are presented in Tables 6-4.

For pavement design purposes, road sections must be defined in accordance with sub grade strength class. Accordingly, CBR values are used to classify the road network in to sections and the classification based on sub grade strength is presented in Tables 6-4.

According to the analysis of the sub grade soil classification based on CBR values, 56 % of the sub grade soils belong to the S1soil group and 33% belongs to the S2 soil group; these two soil groups comprise 88% of the sub grade soils within the study area. The remaining 12% of the sub grade soil belongs to S3 and S4 soil groups.

Sub grade Strength Class	Range CBR (%)
S1	2
S2	3-4
S3	5 – 7
S4	8 – 14
S5	15 – 29
S6	30+

Table: 6- 3Sub grade Strength Classes vs. CBR (ERA Pavement Design Manual-2002)

According to the ERA standard, almost all types of soil can be used for pavement support, the main limitation being the ease with which the material can be handled and compacted. However, materials with CBR value less than 2 are usually very difficult to work and as sub grade, would lead to uneconomical pavement structures. Such soils are usually considered

unsuitable and should be removed; however if these soils must be used they should be covered with a suitable capping layer.

							Sub	grade
No.	Ch.(Km)	CBR Value	Sub grade class	No.	Ch.(Km)	CBR Value	class	
		Main canal		Bra	anch/Main can	nal_1		
1	0.0-1.0	6	S3	1	0.0-1.0	32	S6	
2	1.0-4.0	22	S5	2	1.0-2.0	8	S3	
3	4.0-5.0	50	S6	3	2.0-4.0	18	S5	
4	5.0-9.0	23	S5	4	4.0-4.8	45	S6	
5	9.0-9,5	13	S4			Tertiary Cana	al	
6	9.5-10.70	4	S2	1	0.100	8	S3	
7	10.7-12.0	26	S5	2	1-6	11-14	S4	
8	12.012.5	50	S6	3	6-8	15	S5	
9	12.5-13.140	12	S4					

 Table: 6- 5 Sub grade soil classification based on CBR values with distance coverage

Distance Total (Km)	Subgrade class	% coverage				
	Main canal					
8.3	S ₅	63.20%				
1	S ₃	0.63%				
1.5	S ₆	0.95%				
0.64	S ₄	0.40%				
1.2	S ₂	0.80%				
	Branch/Main canal_1					
1.8	S6	37.5%				
1	S3	20.8%				
2	S5	41.7%				
	Tertiary Canal					
0.100	S5	12.5%				
5	S3	62.5%				
2	S4	25%				

6.2.3 Laboratory Testing

Samples retrieved during the field exploration were returned to our laboratory for assignment of tests by the project engineering geologist. An applicable program of laboratory testing was developed to determine engineering properties of the subsurface materials. Following the completion of the laboratory testing, the field descriptions were confirmed or modified as necessary and test pit were prepared.

Laboratory tests performed included gradation (BS Test 7(A) & 7 (B)), Atterberg limits (BS Test 2 (A) & (B)), Oedometer Consolidation (BS1377:1975, test17), moisture content (BS Test 1(A)), sulfate content and chloride ion content (water extraction), ASTM D 4327). Gradation and Atterberg limits test results were used to classify the soils in accordance with the AASHTO classification system and the Unified Soil Classification System (USCS). The swell and

consolidation tests were used to evaluate potential settlement or expansion of the on-site soils when wetted. Moisture content provides an estimate of the degree of compaction and moisture conditions of the sub grade and underlying materials. Tests for soluble sulfate content, resistivity and soluble chlorides are used to evaluate the potential of the soil to be aggressive to concrete and to corrode buried metal. The laboratory test results are presented in Appendix B-1 to B-2 and on the Test pit logs in Appendix A-1. Photos of the site conditions and Test locations along the project are presented in Appendix-C.

6.3 Subsurface Conditions

6.3.1 Main canal farm road

The sub grade materials in this segment of the road have 3.8 to 13.4 percent fines for main canal Ch.: 0+00 to 3+90, 5+00-10.0 and 11.0-13.140km consisting of Sandy silt mixture trace of clay and Ch.: 3+90 to 5+00km and 10+00-11+00km, plasticity indices that range from non-plastic to 6.74 for Ch.: 0+00-6+444andfor CH:6.444-7.50km & 10-11km PI Value 18.83-20.92 low and high expansion potential when wetted respectively. The natural moisture contents of were relatively low and were 0.54and 5.21 percent, respectively. Sub grade soils from the southern segment have AASHTO classifications of A-1b, A-6, A-2-7, A-2-4 and A-6.

The bulk soil sample from this main canal-1 had a natural moisture content of 0.46-2.39 percent and a loose unit weight of 11.9-13.5KN/m³. The Clayey sand soil encountered in this root can be classified by AASHTO classification of A-2-6.

Swell/Consolidation tests run on the soils from this project ranged from -0.03 to -0.057% indicating that there are minimal problems from swelling or collapsing soils in the majority of the project.

unit	Finesse	Free Swell		NMC		Sulpha	Chlorid
weight	(%)	(%)	PI	(%)	Cc	te	е
12.2-				0.54-		0.26-	0.21-
14.2				5.2	0.03	4.78	0.7
11.9-	18.0-			0.46-	0.046-	0.33-	0.14-
13.5	20.0			2.39	0.057	1.72	0.21
	3.8-13.4						
	39-54						
		0.0-10.0					
		37.50					
		10.00					
	weight 12.2- 14.2 11.9-	weight (%) 12.2- 14.2 11.9- 18.0- 13.5 20.0 3.8-13.4	weight (%) (%) 12.2- 14.2 - - 11.9- 13.5 18.0- 20.0 - 3.5 20.0 - 3.8-13.4 - - 39-54 0.0-10.0 - 37.50 - -	weight (%) (%) PI 12.2- 14.2 - - - 11.9- 13.5 18.0- 20.0 - - 3.8-13.4 - - 39-54 - - 0.0-10.0 - - 37.50 - -	weight (%) PI (%) 12.2- 14.2 0.54- 5.2 11.9- 13.5 18.0- 20.0 0.46- 2.39 3.8-13.4 0.46- 2.39 39-54 0.0-10.0 37.50 0.0	weight (%) PI (%) Cc 12.2- 14.2 0.54- 5.2 0.03 11.9- 13.5 18.0- 20.0 0.46- 2.39 0.046- 0.057 3.8-13.4 - - - 39-54 - - - 37.50 - - -	weight (%) PI (%) Cc te 12.2- 14.2 0.54- 5.2 0.03 4.78 11.9- 13.5 18.0- 20.0 0.46- 2.39 0.046- 0.057 0.33- 1.72 3.8-13.4 0.0-10.0 0.0-10.0 0.0-10.0 0.0-10.0 37.50 37.50 0.0 0.0 0.0

Table: 6- 6: Laboratory test result summary

Water Works Design and Supervision Enterprise

Canal Name	unit	Finesse	Free Swell		NMC		Sulpha	Chlorid
	weight	(%)	(%)	PI	(%)	Cc	te	е
(7.5-13.140km)								
Main Canal-1								
(0.0-4.8km)			0.0-10.0					
Main Canal								
(0.0-5km)				NP				
Main Canal								
(5.0-5.749km)				6.74				
Main Canal								
(5.749-6.444km)				NP				
Main Canal								
(6.444-7.50km				18.83-				
&10-11km)				20.92				
Main Canal-1				6.16-				
wan Canal-T				10.45				

Remarks: NP-Non plastic

6.3.2 Characteristics of Soil Groups Pertaining To Roads

The properties desired in soils for foundations under roads and for base courses under flexible pavements are adequate strength, good compaction characteristics, adequate drainage, and acceptable compression and expansion characteristics. Some of these properties, if inadequate in the soils available, may be supplied by proper construction methods. For instance, materials having good drainage characteristics are desirable, but if such materials are not available locally, adequate drainage may be obtained by installing a properly designed water-collecting system. Strength requirements for base course materials (to be used immediately under the pavement of a flexible pavement structure) are high and only good-quality materials are acceptable.

However, low strengths in sub grade materials may be compensated for in many cases by increasing the thickness of overlying of base materials in flexible pavement construction.

And the proper design of roads pavements requires the evaluation of soil properties in more detail than is possible by using the general soils classification system. However, the grouping of soils in the classification system is such that a general indication of their behavior in road construction may be obtained. The features Obtained from the Soils-Classification of Laboratory Result are presented in table 6-7 below.

	Main canal							
No.	Ch.(Km)	Soil group in USCS	Most soil group	probable in AASHTO sys	Comparable stem			
1	0.0-4.0	SC	A-1b					
2	4.0-5.0	CL	A-6					
3	5.0-9.0	SM-SC	A-2-7					

Table: 6-7: Soil classification (Liu, 1970)

Water Works Design and Supervision Enterprise

4	9.0-12.0	SM	A-2-4
5	12.012.5	CL	A-6
6	12.5-13.140	SM	A-2-4
		Main ca	inal-1
			Most probable Comparable
No.	Ch.(Km)	Soil group in USCS	soil group in AASHTO system
1	0.0-1.0	SC	A-2-6
2	1.0-4.8	SM	A-2-4
		Tertiary	Canal
			Most probable Comparable
No.	Ch.(Km)	Soil group in USCS	soil group in AASHTO system
1	0.1-1	SW	A-1b
2	1-8	SM	A-2-4

6.3.2.1 Modulus of Deformation

While CBR results are technically an indication of strength, researchers have developed several empirical formulas relating CBR to soil resilient modulus (ER) for roadway sub grade, including:

For fine-grained soils with soaked CBR < 10:

Equation: 1- 10......ER(psi)= 1500 * CBR (AASHTO, 1993)

For a wide range of soils:

Equation: 1- 11..... $E_R(psi) = 2555 * CBR^{0.62}$ (AASHTO MEPDG

The relationships are commonly used as estimates, though, because of the complex testing and equipment necessary to directly calculate a soil's resilient modulus.

Main Canal		Main Canal-1	
CH: km	E _R (psi)	CH: km	E _R (psi)
0.0-1.0	7759.7	0.1	9274.8
1.0-4.0	17365.7	0.1 to 6	12532.4
4.0-5.0	28890.3	6 to 8	13695.2
5.0-9.0	17851.0	Tertiary Canal	
9.0-9,5	12532.4	0.0-1.0	21907.0
9.5-10.70	6034.9	1.0-2.0	9274.8
10.7-12.0	19260.8	2.0-4.0	15334.2
12.012.5	28890.3	4.0-4.8	27063.4
12.5-13.140	11925.7		

Table: 6-8 Summary of a soil's resilient modulus

6.3.2.2 Free Swell

Dry soils with significant proportions of clay swell when they come in contact with water and shrink when dry. Such expansive soils cause considerable damage on structures built on them. Hence swelling characteristics of soils (especially clay soils) should be determined.

The amount of clay content, initial condition of the soil sample and the time allowed for swelling influence the swelling potential. Swelling potential of selected samples is determined at

WWDSE laboratory in Addis. The result of free swell tests on selected soil samples from the road networks are given in Tables 6-6.

Free swell results help to determine the swelling characteristics of soils. In fact, swelling characteristics of soils can also be determined from index properties of soils. Tables 6-9 -6.11 show expansiveness of soils, based on free swell test results and index properties. From the laboratory result except the main canal section 6.5km to 7.5km the P value is <12 and free swell <35%, therefore, the subgrade in the farm site is can be considered as low expansiveness, but at ch:6.5-7,5km of main canal medium expansiveness.

Table: 6- 9: Liquid limit and expansiveness (Burt G. Look, 2007)	
	1

Liquid Limit (%) As per Chen	Liquid Limit (%) As per IS 1498	EXPANSIVENESS
<30	20 - 35	Low
30 - 40	35 - 50	Medium
50 - 60	50 - 70	High
>60	70 - 90	Very High

T 0 40 DL			
Table: 6- 10: Plasticity	y index and ex	pansiveness ((Burt G. Look, 2007)

Plasticity Index (%) As per Chen	Plasticity Index As per Gibbs and Holtz	Plasticity Index As per IS 1498	EXPANSIVENESS
0 - 15	<20	<12	Low
10.0 - 35	12.0 - 34	12.0 - 23	Medium
20 - 35	34 - 45	23 - 32	High
>35	>45	>32	Very High

Table: 6- 11: Free swell and expansiveness (IS: 2911 Part III-1980)

DIFFERENTIAL FREE SWELL (%)	Free Swell Percent (%)	EXPANSIVENESS
<20	<50	Low
20 - 35	50 - 100	Moderate
35 - 50	100 - 200	High
>50	>200	Very High

7. FARM ROAD GEOTECHNICAL CONCLUSION AND RECOMMENDATIONS

Omo valley Road consists of a network of access roads within the command area of Irrigation Project.

A thorough geotechnical investigation of the sub grade soil was carried out to characterize the sub grade soil and to provide geotechnical information for the pavement design. During the investigation, test pits were dug and logged, representative soil samples were collected and the necessary laboratory tests were carried out followed by analysis and interpretation of the test results.

The results indicated that, soils along the road network basically fall under A-2-4and A-2-7 soil groups. The dominant sub grade class for main canal covers about 63.20% is sub S_5 , for main canal-1 about 41.7% also S5-and for tertiary canal S3 about 62.5%.

The CBR values of the S1 and S2 soil groups (especially S1) fall at the lower end indicating that these soils are difficult to work. According to ERA standard, sub grade soils with CBR value less than 2 are usually very difficult to work and as sub grade would lead to uneconomical pavement structures. Such soils are usually considered unsuitable and should be removed; however if these soils must be used they should be covered with a suitable capping layer.

Accordingly, 0.80% main canal road at ch: 9.5 to 10.70km has CBR value 4 of S_2 and it need remedial measures, like replacing with other granular material.

8. CONSTRUCTION MATERIALINVESTIGATION

Various sources have been studied in five phases for the following construction materials to be used on the project:

- a) Embankment Materials
- b) Sub-base Materials
- c) Concrete Aggregates
 - i. Fine Aggregates
 - ii. Coarse Aggregates
- d) Masonry Stones
- e) fill material

The location of the sources identified so far for the above listed materials is marked on Figure 9-1. Site photographs for some of the material sources have also been appended to this report as Appendix-C.

8.1 Field and Laboratory Geotechnical Studies

Field and laboratory geotechnical studies have been carried out in WWDSE laboratory services for qualitative and quantitative evaluation of materials listed in Section-2.

While the geotechnical studies carried out construction material assessment are discussed in the following sections.

8.2 Field Geotechnical Studies

During field geotechnical studies carried out, samples were collected for the following materials for subsequent laboratory testing:

- Bulk samples from FRCM location for sub-base material
- Bulk samples from S1 location for concrete fine aggregates
- Bulk samples from CB-1 & CB-2 for the Canal lining or fill.
- · Rock samples for masonry

A brief description of field studies carried out has been discussed in the following sections.

8.2.1 Material for General Embankment Fill

Studies carried out in have pump station been utilized for the evaluation of general embankment fill material. No additional geotechnical field studies have been carried out for the general embankment fill therefore; we can use the excavated materials as fill.

8.2.2 Sub-base Material

During this phase of studies FRCM locations could be visited only. The visual inspection revealed that the material at these locations in general comprise 0.50 to 1.5m thick layer of residual soil followed by bed rocks. This layer is mix with rock fragments of gravels size with silty clay and iron minerals as binder in varying proportions. Site photographs for these locations have been appended to this report as Appendix-C.

8.2.3 Concrete Aggregates

8.2.3.1 Fine Aggregate

Four sources i.e. S-1, S-2, S-3, S4, and S-5had recently been identified for concrete fine aggregates. S-1-S-3 source near new camp site all sites was accessible during field studies.

Quartz is the major mineral constituents of the gravels/cobbles. Gravels are rounded to subround in varying sizes (fine to coarse gravels/cobbles).

Sand source located near to the command area, at an off-set of approximately range of 0.1km to 2km from New camp site, is a small seasonal nullah/drain conveying the rain water only (FA-4 source is a few km upstream of this location). All layers (0.0-3.0m) of sand are present in the Sewugela & Korcho River as revealed by the excavation of a shallow test pit.

OPP. ID	Easting	Northing	Depth (m)	River/ site Span	Distance from construction site	Locality name	Geological Description
Opption_1,	195273	574903	3-5m	20 m to 40 m	100 m from		Alluvial
Sand	195227	574917			New camp		deposit
Boundary	195210	574901			site		of fine to
points	195297	574702					coarse
(S-1-TP-1)	195255	574812					grained
							Sand mix
							with gravel
Opption_2	194124	580956	3m	3 m to 7 m	1-2 km far		Alluvial
Sand					from New		deposit
Boundary					camp site		of fine to
points							coarse
							grained
							Sand mix
							with gravel

Table: 8- 1Location of sand sources

May, 2015

OPP. ID	Easting	Northing	Depth (m)	River/ site Span	Distance from construction site	Locality name	Geological Description
Opption_3 Sand Boundary points	196712 196712 197020 197024	576377 576361 576484 576482	3.5m	3m to 22m	1.5 km far from the new camp site	Near to pipe line_2	Alluvial deposit of fine to coarse grained Sand mix with gravel
Opption_4 Sand Boundary points	194262 194264 194120 194129 194981	574354 574381 574306 574298 574539	3.5m	8m-13m	100m to 1km, from new camp site	The way to Dus village	Alluvial deposit of fine to coarse grained Sand mix with gravel
Opption_5 Sand Boundary points (S-4-TP-1)	197687	577120	3m-5m	10m		Sewugela river (NE direction of new camp)	
Opption_6 Sand Boundary points (S-5-TP-1)	194031	580749		3-10m		Tentalo river (Near to Baza Village)	

8.2.3.2 Concrete Coarse Aggregate

Three sources for concrete coarse aggregate i.e. G-1 and G-2 sources were visited during current studies.

Quartz is the major mineral constituents of the gravels/cobbles. Gravels are rounded to subround in varying sizes (fine to coarse gravels/cobbles). Natural gravel source is located at an offset of 5km from Omo River around Muruli park. At RS-1 locations rock out crops are exposed in a vast area as shown in the site photographs (Appendix-C). Major rock type is Basement rocks at RS-1 location. FromRS-1 location rocks a crusher is already operational and the aggregate produced. Aggregate produced from RS-1 source had recently been used in the construction of camp building.

Photo: 8- 1: View of Available rock and crusher at site **8.3 Laboratory Geotechnical Studies**

The soil/rock samples collected were subjected to some of the below listed laboratory tests as per latest AASHTO/ASTM standards at WWDSE laboratory, for qualitative evaluation of the materials for intended use:

Laboratory testing	Number of Test	Standard
Grain size distribution (sieve analysis)	3	BS Test 7(A) & 7 (B)
Atterberg limits (LL, PL & PI)	2	BS Test 2 (A) & (B)
Natural Moisture Content (NMC)	2	BS Test 1(A)
Specific gravity	2	ASTM, C-128
Loose unit weight	2	Gibb' & Holtz (1956)s
Free swell	2	Gibb' & Holtz (1956)s
Water absorption	2	ASTM, C-128
Standard compaction	2	BS1377:1975, test12 &
		13
Permeability	2	ASTM D2434
Sulphate	2	Water Extract
Chloride	2	Water Extract
LAA	2	
Point load	1	
CBR	1	AASHTO T 193
Soundness, %	1	
AIV, %	1	
Fineness Modulus	1	

Table: 8- 2 List of Laboratory test

The samples collected in the study were subjected to various laboratory tests for qualitative evaluation of the materials for intended use. A comprehensive summary of the laboratory test results obtained for general embankment fill, sub-base material, concrete aggregates, and masonry stone is attached with this report as (Appendix- B-2).

II				Rock	Samples					
N o	Sampl e ID	Location of Quarry Site	Sample Depth (m)	SG	Water Absorptio n (%)	AIV (%)	Soundnes s (SSS) (%)	LAA (%)	Point Load (Mpa)	
1	RQ1	Quarry-1	Surface	3.01	0.62	39.9 2	2.56	49.9 5	6.62	
		LAA-								
RE	EMARK AIV-Aggregate Impact Value SSS-Soundness by Sodium Sulphate SG- (Specific Gravity) Image: Comparison of the second s									

Table: 8- 3 Summar	y of laboratory test result
--------------------	-----------------------------

 	I Sand/Aggregate & Filter													
N	TP/	Locatio				Grair	<u>ı size</u> (distrib	ution			6		_
0	BH ID	n of Borrow/ Quarry	Sample Type	Depth (m)	Specific gravity	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Fine (%)	LAA	Soundness	Fineness Modulus	Water Absorption (%)
	S1	Sand Sewugel	SD S	0.0- 3.0	2.7 7	17. 71	64. 76	14. 13	3.4 0	17. 53				
1	51	a River	BD S	0.0- 3.0							N/A	12.13	3	2.86

Section-III: Investigation and Sectoral Studies Volume-IV: Geotechnical Investigations and Foundation Recommendations

	CL	AY BOR	ROW S	SITE																	
						Grai	n size (distribu	ution	A	tterber	g Limit	S			Co	Compaction		Chemic		nical
°z	£ 9	cation of	Sample type	Sample Depth	Unit veiaht	Sand	Silt	Clay	Fine	LL	PL	Ы	SL	Free Swell	Pin	NMC	OMC	MDD	rmeab		Chlo ride
		Γo	ΰ.	ы С	3	Š	0)	U U	ш		-		07			z	0	Σ	Бе Бе	(meq /I)	(me q/l)
1	CB-	Clay	BD	0.0-	1.15									57.50			25.2	1.57	1.44*	2.14	2.94
	TP-1	borro	S	3.0													0	4	10-2		
2		w-2	SD	0.50		12.3	58.1	29.5	87.6	45.7	23.1	22.6				7.28					
			S	-3.0		8	2	0	2	7	3	4									
3	CB-	Clay	BD	0.0-	1.66									42.50			25.4	1.50	2.41*	2.14	2.94
	TP-2	borro	S	3.0													0	8	10-5		
4		w-1	SD	0.0-		7.48	83.8	8.64	92.5	34.7	27.2	7.51				11.4					
			S	1.60			8		2	9	8					3					

Material studies have been carried out in present studies, as described earlier, to find the suitable sources of construction material for general embankment fill, sub-base construction, concrete fine/coarse aggregate, masonry stone etc., at the locations already identified by the Client in addition to few previously identified locations. Suitability or unsuitability of the aforementioned construction materials and approximate reserve estimation of the suitable sources based on the overall field geotechnical studies and qualitative laboratory testing carried out have been discussed in the following sections.

A figure showing the location of sources identified for construction materials is attached as Figure 8-1.

8.2.4 Material for General Embankment Fill

During pump site foundation investigation the material has been identified plan to use as fill material. The sources were subjected to Gradation Analysis, Atterberg limits, etc for qualitative evaluation. In addition, Clay Borrow opption-1 & Clay Borrow opption-2 site sources can also be proposed to use as fill through blending with sand and silt material.

In engineering practice, generally low plastic or coarser materials are commonly used as backfill. To explore suitable borrow material sources for embankment construction, soil were exposed at the pump station-1 locations to validate their suitability as embankment fill.

			Gra dist	in <u>ribut</u>		size	Att. Limi	t				с	f	Con so.	Sulp hate	Chlo ride
TP- ID	Depth m	weight (gm/cc)	Sand	Silt	Clay	Fine		PL	Ы	Free Swell	NMC	(KPa)	(Deg.)	ပပ	(I/bəm)	(meq/I)
PS-	0.0-									47		48.	18.	0.24		
1-	5.0	1.12								.5		33	00	6	8.48	10.36
TP	0.00-		65	25	8.	34	22.				4.					
2	2.50		.8	.9	3	.2	89	NP			89					
Pro																
р.																
Pu	1.3-		30	48	21	69	31.	20.	11.							
mp	3.0		.4	.4	.2	.6	86	70	16							

Table: 8- 4 Engineering properties of top materials of pump station foundation site.

Photo: 8- 2: Clay borrow option-1 site view

Photo: 8- 3: Clay borrow option-2 site view

8.2.4.1 Approximate Quantification of Suitable Material

The material studies reveal that the construction source comprises more than 9.6 &2.7 million cubic meter of CB-1 & CB-2 respectively material will meeting the project requirements.

8.2.5 Sub-base Materials

The shingle / gravel layer to be placed over the compacted embankment is referred to as the sub-base layer in the ERA standard. The prospectively suitable sub-base material sources have been identified in the project area are Gravel at Omo river near to Muruli park and Residual soil rock fragment at the foot of quarry site..

One sources for sub-base material have been identified and evaluated qualitatively.

Materials from these sources were tested for unit weight, gradation, 1-point soaked CBR,

The fine fraction at the aforementioned sub-base locations is medium to highly plastic in nature and higher %age of fines may have catastrophic impact on the desired properties.

Therefore, it must be ensured that the maximum fines in material obtained from these sources shall be less than 15%, as the test result of FRCM %age fines-6.37 it implies good.

Visual inspection of material for gravel source reveals that the strong, sub rounded to rounded sandy gravel mix with cobbles and trace of boulder.

Photo: 8- 4: Photo view of FRCM site and Gravel source at Omo River near to Muruli Park

8.2.5.1 Approximate Quantification of Suitable Material

Material sources for the sub-base construction i.e. G1 and FRCM source an area in table 8-1.

8.2.6 Masonry Stone

The qualitative evaluation of the material from RS-1 location (shown in Figure 8-1) that Basement rock available at this location meets the requirements of masonry stone.

The samples from these sources were subjected to water absorption; Quality tests like LAA, Specific Gravity and Soundness have been carried out so as to appropriately evaluate the suitability of these material sources for the subsequent intended use.

On the basis of the studies carried out the test result, the identified sources have good prospects for acceptance.

8.2.6.1 Approximate Quantification of Suitable Material

The quantification of the material available at RS-1 location can be in table 8-5below.

	0. 0 2000			Distance		
				from		
				construction	Locality	Geological
OPP. ID	Easting	Northing	elevation(m)	site	name	Description
Rock	195641	573514	490	823m far from		
quarry				New camp		
site	195610	573626	420	site		
	191644	582790				
	191816	582710				
Class	191892	582896		about 12 km		
Clay Borrow	191942	582898		far	Kercha	
Option -	191620	582993		from new	Village	
2	191587	583056		camp site,	village	
2	191332	582976		4km from		
	191231	582721		project		Reddish brown,
	192157	582703		boundary		Clay
	193486	573969	409		In	
					between	
Clay					the two	Dark brown, Clay
Borrow					road old	Dark brown, Clay
Option -				50m from the	and new	
1	193701	573995	409	main canal	camp site	
	188624	571428				
	188677	571377				
	188658	571393			0	
	188635	571448			Omo River	Dark gray, coarse
Gravel	188626	571466			near to	Dark gray, coarse grained, very strong, sub
Borrow	188624	571499		5km far from	Muruli	rounded to rounded,
Option -	188654	571607		Main canal		sandy gravel mix with
1	188677	571637			park, @ the left	cobbles, pebble and
	188663	571698			bank of	trace of boulders
	188703	571705			the river	
	188737	571666				
	188776	571581				
	188765	571515				

Table: 8- 6 Anticipated Quantity of construction material sources

No	Site Name	Area	Area_Ha	Meter (m2)	Depth(m)	Volume (m3)
1	Gravel borrow site	28794.4	2.9	28794.4	3.00	86383.24
2	Clay borrow opp_1 Site	276870.2	27.7	276870.2	3.5	969045.5
3	Sand borrow opp_4 Site	17507.9	1.8	17507.9	4.0	70031.72
4	Sand borrow opp_1 Site	16313.8	1.6	16313.8	4.0	65255.3
5	Rock Quarry site	92503.3	9.3	92503.3	10.00	925033.4
6	Selected material site	34256.6	3.4	34256.6	2.0	68513.2
7	Sand borrow opp_3	6778.5	0.7	6778.5	4.0	27114.07
8	Sand borrow opp_5	37823.9	3.8	37823.9	4.0	151295.6
9	Sand borrow opp_2	42433.8	4.2	42433.8	4.0	169735.4
10	Sand borrow opp_6	16285.4	1.6	16285.4	4.0	65141.8
11	Clay borrow opp_2 Site	697524.2	69.8	697524.2	4.0	2790097

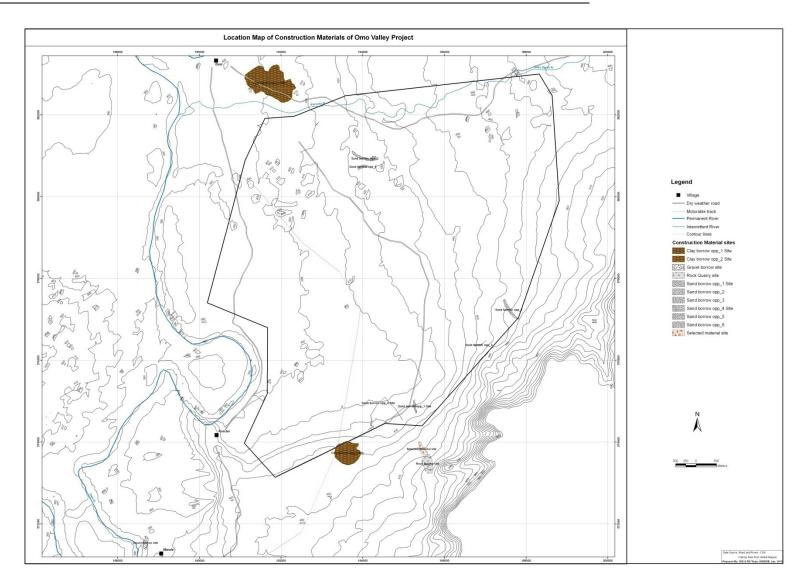


Figure: 8-1: Construction material source location map

9. REFERENCES

- 1. BRITISH STANDARD, BS 5930:1999: Code of practice for site Investigations.
- 2. C.R.I. Clayton 1995, the Standard Penetration Test (SPT) Method and Use.
- Davidson, 1983. Geological Map of Ethiopia, Scale 1:500,000, with an explanatory note, E.I.G.S., Addis Ababa.
- EARTH MANUAL PART 1: THIRD EDITION, 1998. U.S. DEPARTMENT OF THE INTERIOR Earth Sciences and Research Laboratory Geotechnical Research Technical Service Center, Denver, Colorado 1998.
- 5. Joseph E. Bowles, 1996, Foundation Analysis and Design
- 6. Micheal Carter and Stephon Bentley, 1991, Correlation of Soil Properties.
- 7. Naval Facilities Engineering Command, Alexandria Virginia, Foundation and Earth Structures, 1986, DM-7.02
- WWDSE (various date): Geotechnical technical specification and guide for site investigation of different Irrigation project (Rib, Arjo-Dedessa, Koga, Gidabo, Tendaho, Tekeze-kebele-16, Kuraz and Gololcha)

APPENDICES

APPENDIX-A

APPENDIX A-1: Test Pit Log Descriptions

APPENDIX A-2: DCP Test Raw Data

MAIN CANAL-1 farm road DCP Test Result

Title	Penetration D	ata Report		
Project Name	Main Canal-1	Farm road		
Chainage (km)	0	Surface Type	Unpaved	
Direction		Thickness (mm)	0	
Location/ Offset	Carriageway	Base Type		
Cone Angle				
(degrees)	60	Thickness (mm)		
No.	Blows	Cumulative Blows	Penetration Depth	Penetration Rate
1	0	0	223	0
2	1	1	245	22
3	2	3	256	5.5
4	10	13	322	6.6
5	10	23	390	6.8
6	10	33	495	10.5
7	10	43	584	8.9
8	10	53	595	1.1
9	20	73	605	0.5

Chainage (km)	1	Surface Type	Unpaved	
Direction		Thickness (mm)	0	
Location/ Offset	Carriageway	Base Type		
Cone Angle(degrees)	60	Thickness (mm)		
No.	Blows	Cumulative Blows	Penetration Depth	Penetration Rate
1	0	0	267	0
2	1	1	290	23
3	1	2	300	10
4	1	3	310	10
5	1	4	320	10
6	1	5	325	5
7	1	6	335	10
8	1	7	345	10
9	1	8	357	12
10	1	9	368	11
11	1	10	378	10
12	1	11	388	10
13	1	12	398	10
14	1	13	407	9
15	1	14	418	11
16	1	15	428	10
17	1	16	435	7
18	1	17	467	32
19	1	18	487	20
20	1	19	494	7
21	1	20	508	14
22	1	21	517	9
23	1	22	523	6
24	1	23	534	11
25	1	24	542	8

Chainage (km)	1	Surface Type	Unpaved	
Direction		Thickness (mm)	0	
Location/ Offset	Carriageway	Base Type		
Cone Angle(degrees)	60	Thickness (mm)		
No.	Blows	Cumulative Blows	Penetration Depth	Penetration Rate
26	1	25	552	10
27	1	26	560	8
28	1	27	569	9
29	1	28	579	10
30	1	29	589	10
31	1	30	602	13
32	1	31	614	12
33	1	32	625	11
34	1	33	638	13
35	1	34	653	15
36	1	35	664	11
37	1	36	675	11
38	1	37	700	25
39	1	38	720	20
40	1	39	740	20
41	1	40	767	27
42	1	41	797	30
43	1	42	823	26
44	1	43	854	31
45	1	44	897	43
46	1	45	930	33
47	1	46	965	35
48	1	47	1000	35

Chainage (km)	2	Surface Type	Unpaved	
Direction		Thickness (mm)	0	
Location/ Offset	Carriageway	Base Type		
Cone Angle				
(degrees)	60	Thickness (mm)		
No.	Blows	CumulativeBlows	Penetration Depth	Penetration Rate
1	0	0	235	0
2	1	1	252	17
3	1	2	263	11
4	2	4	287	12
5	2	6	308	10.5
6	2	8	335	13.5
7	2	10	357	11
8	2	12	408	25.5
9	5	17	452	8.8
10	5	22	503	10.2
11	10	32	548	4.5
12	10	42	587	3.9
13	10	52	625	3.8
14	10	62	656	3.1
15	10	72	680	2.4
16	10	82	688	0.8
17	10	92	700	1.2
18	10	102	709	0.9
19	10	112	723	1.4

Chainage (km)	2	Surface Type	Unpaved	
Direction		Thickness (mm)	0	
Location/ Offset	Carriageway	Base Type		
Cone Angle				
(degrees)	60	Thickness (mm)		
No.	Blows	CumulativeBlows	Penetration Depth	Penetration Rate
20	10	122	742	1.9
21	10	132	760	1.8
22	10	142	770	1
23	10	152	780	1
Remarks:				
Chainage (km)	3	Surface Type	Unpaved	
<u> </u>		Thickness	-	
Direction		(mm)	0	
Location/				
Offset	Carriageway	Base Type		
		Thickness		
Cone Angle (degrees)	60	(mm)		
		Cumulative	Penetration	Penetration
No.	Blows	Blows	Depth	Rate
1	0	0	225	0
2	1	1	228	3
3	1	2	300	72
4	1	3	310	10
5	1	4	330	20
6	1	5	345	15
7	1	6	360	15
8	2	8	392	16
9	2	10	416	12
10	2	12	438	11
11	2	14	458	10
12	2	16	477	9.5
13	5	21	516	7.8
14	5	26	548	6.4
15	10	36	595	4.7
16	10	46	620	2.5
17	10	56	654	3.4
18	10	66	680	2.6
19	10	76	720	4
20	10	86	760	4
21	10	96	800	4
Remarks:				

Chainage (km)	4	Surface Type	Unpaved	
		Thickness		
Direction		(mm)	0	
Location/Offset	Carriageway	Base Type		
Cone Angle		Thickness		
(degrees)	60	(mm)		
<u></u>		Cumulative	Penetration	Penetration
No.	Blows	Blows	Depth	Rate
1	0	0	212	0

Chainage (km)	4	Surface Type	Unpaved	
		Thickness	-	
Direction		(mm)	0	
Location/Offset	Carriageway	Base Type		
Cone Angle		Thickness		
(degrees)	60	(mm)		
No.	Blows	Cumulative Blows	Penetration Depth	Penetration Rate
2	10	10	250	3.8
3	10	20	464	21.4
4	10	30	739	27.5
5	10	40	805	6.6
6	10	50	860	5.5
7	10	60	910	5
Remarks:				
Chainage (km)	5	Surface Type	Unpaved	
Direction		Thickness (mm)	0	
Location/				
Offset	Carriageway	Base Type		
Cone Angle		* •		
(degrees)	60	Thickness (mm)		
		Cumulative	Penetration	Penetration
No.	Blows	Blows	Depth	Rate
1	0	0	220	0
2	10	10	300	8
3	10	20	360	6
4	10	30	400	4
5	10	40	470	7
6	10	50	530	6
7	10	60	590	6
8	10	70	646	5.6
9	10	80	720	7.4
10	10	90	770	5
Remarks:				

MAIN CANAL-1 STRUCTURE SITE DCP TEST RAW DATA

				TP-I D:
Chainage (km)	1.5	Surface Type	Unpaved	PC2-CD2
Direction	@1.5m-2.25m	Thickness (mm)	0	
Location/ Offset	Carriageway	Base Type		
Cone Angle				
(degrees)	60	Thickness (mm)		
Zero Error				
(mm)	149	Surface Moisture	Dry	
		Cumulative	Penetration	
No.	Blows	Blows	Depth	Penetration Rate
1	0	0	149	0
2	1	1	245	96
3	1	2	328	83
4	1	3	405	77
5	1	4	475	70

				TP-I D:
Chainage (km)	1.5	Surface Type	Unpaved	PC2-CD2
Direction	@1.5m-2.25m	Thickness (mm)	0	
Location/ Offset	Carriageway	Base Type		
Cone Angle				
(degrees)	60	Thickness (mm)		
Zero Error				
(mm)	149	Surface Moisture	Dry	
		Cumulative	Penetration	
No.	Blows	Blows	Depth	Penetration Rate
6	1	5	533	58
7	1	6	582	49
8	1	7	623	41
9	1	8	660	37
10	1	9	690	30
11	1	10	720	30
12	1	11	740	20
13	1	12	760	20
14	1	13	775	15
15	1	14	795	20
16	1	15	810	15
17	1	16	823	13
18	1	17	837	14
19	1	18	850	13
20	1	19	863	13
21	1	20	876	13
22	1	21	885	9
23	1	22	900	15

Title	Penetration Data	Report				
Project Name	Primary Canal-2-0	Primary Canal-2-CD2-DCP Test Result				
Chainage (km)	0	Surface Type	Unpaved			
Direction	@0.0m-0.73m	Thickness (mm)	0			
Location/						
Offset	Carriageway	Base Type				
Cone Angle						
(degrees)	60	Thickness (mm)				
Zero Error						
(mm)	167	Surface Moisture	Dry			
			Penetration	Penetration		
No.	Blows	Cumulative Blows	Depth	Rate		
1	0	0	167	0		
2	1	1	190	23		
3	1	2	200	10		
4	1	3	210	10		
5	1	4	220	10		
6	1	5	225	5		
7	1	6	235	10		
8	1	7	245	10		
9	1	8	257	12		
10	1	9	268	11		
11	1	10	278	10		
12	1	11	288	10		

Title	Penetration Data Report				
Project Name	Primary Canal-2-	CD2-DCP Test Result			
Chainage (km)	0	Surface Type	Unpaved		
Direction	@0.0m-0.73m	Thickness (mm)	0		
Location/					
Offset	Carriageway	Base Type			
Cone Angle					
(degrees)	60	Thickness (mm)			
Zero Error					
(mm)	167	Surface Moisture	Dry		
Nia	Diama	Ourselative Diama	Penetration	Penetration	
No.	Blows	Cumulative Blows	Depth	Rate	
13	1	12	298	10	
14	1	13	307	9	
15 16	1	<u> 14 </u>	318 328	11	
16	1	16	328	10 7	
17	1	10	335	22	
18	1	18	367	10	
20		19	374	7	
20	1	20	387	13	
22	1	20 21	394	7	
23	1	22	408	14	
23	1	23	408	9	
25	1	23	423	6	
26	1	25	434	11	
20	1	26	442	8	
28	1	27	452	10	
29	1	28	460	8	
30	1	29	469	9	
31	1	30	479	10	
32	1	31	489	10	
33	1	32	502	13	
34	1	33	514	12	
35	1	34	525	11	
36	1	35	538	13	
37	1	36	553	15	
38	1	37	564	11	
39	1	38	575	11	
40	1	39	600	25	
41	1	40	620	20	
42	1	41	640	20	
43	1	42	667	27	
44	1	43	697	30	
45	1	44	723	26	
46	1	45	794	71	
47	1	46	797	3	
48	1	47	830	33	
49	1	48	865	35	
50	1	49	900	35	

Title	Penetration Data Report
Project Name	Primary canal-2_CD3, DCP Test result

Chainage (km)	0.0-0.73	Surface Type	Unpaved	
Location/ Offset	Carriageway	Base Type	•	
Cone Angle				
(degrees)	60	Thickness (mm)		
Zero Error (mm)	21	Surface Moisture	Very Dry	
No.	Blows	Cumulative Blows	Penetration Depth	Penetration Rate
1	0	0	215	0
2	1	1	230	15
3	1	2	235	5
4	1	3	242	7
5	1	4	245	3
6	1	5	248	3
7	1	6	252	4
8	1	7	261	9
9	1	8	264	3
10	1	9	267	3
11	1	10	268	1
12	1	11	272	4
13	1	12	277	5
14	1	13	282	5
15	1	14	287	5
16	1	15	292	5
17	1	16	293	1
18	1	17	294	1
19	1	18	298	4
20	1	19	300	2
21	1	20	305	5
22	1	21	306	1
23	1	22	308	2
24	1	23	313	5
25	1	24	317	4
26	1	25	322	5
27	1	26	323	1
28	1	27	328	5
29	1	28	333	5
30	1	29	336	3
31	1	30	340	4
32	1	31	345	5
33	1	32	350	5
34	1	33	351	1
35	1	34	352	1
36	1	35	353	1
37	1	36	355	2
38	1	37	356	1
39	1	38	362	6
40	1	39	365	3
41	1	40	370	5
42	1	41	371	1
43	1	42	375	4
44	1	43	377	2
45	1	44	382	5
46	1	45	386	4
47	1	46	388	2
••	l ·			

Title	Penetration Data Report				
Project Name	Primary canal	-2_CD3, DCP Test resu	ult		
Chainage (km)	0.0-0.73	Surface Type	Unpaved		
Location/ Offset	Carriageway	Base Type			
Cone Angle					
(degrees)	60	Thickness (mm)			
Zero Error (mm)	21	Surface Moisture	Very Dry		
No.	Blows	Cumulative Blows	Penetration Depth	Penetration Rate	
48	1	47	392	4	
49	1	48	397	5	
50	1	49	400	3	
51	1	50	403	3	
52	1	51	406	3	
53	1	52	407	1	
54	1	53	408	1	
55	1	54	409	1	
56	1	55	410	1	
57	1	56	420	10	
58	1	57	422	2	
59	1	58	427	5	
60	1	59	428	1	
61	1	60	429	1	
62	1	61	433	4	
63	1	62	436	3	
64	1	63	438	2	
65	1	64	439	1	
66	1	65	447	8	
67	2	67	455	4	
68	2	69	460	2.5	
69	5	74	480	4	
70	5	79	510	6	
71	5	84	545	7	
72	5	89	580	7	
73	5	94	614	6.8	
74	5	99	655	8.2	
75	5	104	670	3	
76	5	109	770	20	
77	5	114	830	12	
78	5	119	900	14	
79	5	124	950	10	

Title	Penetration Data Report						
Project Name	Primary canal	Primary canal-2_CD7, DCP Test result					
Chainage (km)	0	Surface Type	Unpaved				
Location/Offset	Carriageway	Base Type					
Cone Angle (degrees)	60	Thickness (mm)					
Zero Error (mm)	170	Surface Moisture	Dry				
			Penetration				
No.	Blows	Cumulative Blows	Depth	Penetration Rate			
1	0	0	179	0			
2	1	1	197	18			
3	1	2	206	9			
4	2	4	230	12			

Title	Penetration Data Report				
Project Name	Primary canal	-2_CD7, DCP Test res	ult		
Chainage (km)	0	Surface Type	Unpaved		
Location/Offset	Carriageway	Base Type			
Cone Angle (degrees)	60	Thickness (mm)			
Zero Error (mm)	170	Surface Moisture	Dry		
			Penetration		
No.	Blows	Cumulative Blows	Depth	Penetration Rate	
5	2	6	253	11.5	
6	2	8	273	10	
7	2	10	290	8.5	
8	2	12	310	10	
9	2	14	330	10	
10	2	16	350	10	
11	2	18	370	10	
12	2	20	386	8	
13	2	22	402	8	
14	2	24	420	9	
15	2	26	435	7.5	
16	2	28	452	8.5	
17	5	33	490	7.6	
18	5	38	530	8	
19	5	43	572	8.4	
20	5	48	620	9.6	
21	5	53	663	8.6	
22	5	58	705	8.4	
23	5	63	745	8	
24	5	68	783	7.6	
25	5	73	820	7.4	
26	5	78	850	6	

MAIN CANAL STRUCTURE SITE DCP TEST RAW DATA

Title	Penetration Data Report							
Project Name	MC-TP-2 DCP Tes	MC-TP-2 DCP Test at 0.50m to 1.29m						
Chainage (km)	0.5	Surface Type	Unpaved					
Direction	@0.50-1.29	Thickness (mm)	0					
Location/Offset	Carriageway	Base Type						
Cone Angle (degrees)	60	Thickness (mm)						
			Penetration	Penetration				
No.	Blows	Cumulative Blows	Depth	Rate				
1	0	0	120	0				
2	1	1	133	13				
3	1	2	142	9				
4	1	3	150	8				
5	1	4	161	11				
6	1	5	163	2				
7	1	6	173	10				
8	1	7	182	9				
9	1	8	190	8				
10	1	9	200	10				
11	1	10	210	10				
12	1	11	221	11				

Title	Penetration Data Report				
Project Name	MC-TP-2 DCP Te	est at 0.50m to 1.29m			
Chainage (km)	0.5	Surface Type	Unpaved		
Direction	@0.50-1.29	Thickness (mm)	0		
Location/Offset	Carriageway	Base Type			
Cone Angle					
(degrees)	60	Thickness (mm)			
			Penetration	Penetration	
No.	Blows	Cumulative Blows	Depth	Rate	
13	1	12	233	12	
14	1	13	234	1	
15	1	14	254	20	
16	1	15	264	10	
17	1	16	274	10	
18	1	17	284	10	
19	1	18	295	11	
20	1	19	305	10	
21	1	20	320	15	
22	1	21	329	9	
23	1	22	336	7	
24	1	23	346	10	
25	1	24	355	9	
26	1	25	365	10	
27	1	26	379	14	
28	1	27	390	11	
29	1	28	405	15	
30	1	29	420	15	
31	1	30	430	10	
32	1	31	445	15	
33	1	32	455	10	
34	1	33	470	15	
35	1	34	505	35	
36	1	35	525	20	
37	1	36	540	15	
38	1	37	560	20	
39	1	38	580	20	
40	1	39	600	20	
41	1	40	617	17	
42	1	41	635	18	
43	1	42	652	17	
44	1	43	670	18	
45	1	44	685	15	
46	1	45	702	17	
47	1	46	720	18	
48	1	47	736	16	
49	1	48	755	19	
50	1	49	768	13	
51	1	50	775	7	
52	1	51	785	10	
53	1	52	800	15	
54	1	53	820	20	
55	1	54	840	20	
56	1	55	860	20	
00	<u> </u>	00	000	20	

Title	Penetration Da	ata F	Report				
Project Name			at 0.50m to 1.29m				
Chainage (km)	0.5		Surface Type		Unpaved		
Direction	@0.50-1.29		Thickness (mm)		0		
Location/Offset	Carriageway		Base Type				
Cone Angle							
(degrees)	60		Thickness (mm)				
(uogioco)					Penetration		Penetration
No.	Blows		Cumulative Blow	/s	Depth		Rate
57	1		56		870		10
58	1		57		890		20
59	1		58		908		18
Title	Penetration D	ata R			500		10
Project Name	MC-CD-7-DCP						
Chainage (km)	0		rface Type	11.	npaved		
Direction	0		ickness (mm)	0	ipaveu		
Location/ Offset	Corriggourou			U			
	Carriageway		se Type	-			
Cone Angle	60	T	icknoce (mm)				
(degrees)	170		ickness (mm) rface Moisture	D .			
Zero Error (mm)				Dr		6	
No.	Blows		mulative Blows		enetration Depth		enetration Rate
1	0	0		17		0	-
2	1	1		19		20	
3	1	2		20		1	
4	1	3		22		17	7
5	1	4		22		3	
6	1	5		25	0	25	
7	1	6		26	0	1()
8	1	7		27	0	1()
9	1	8		28	51	1	1
10	1	9		28	8	7	
11	1	10		30	0	12	2
12	1	11		31	0	1()
13	1	12		32	.0	1()
14	1	13		33		15	
15	1	14		34		8	
16	1	15		35		1()
17	1	16		35		2	-
18	1	17		36		1()
19	1	18		37		14	
20	1	19		39		13	
20	1	20		40		13	
22	1	20		40		15	
23	1	21		42		1(
23	1	22		43		13	
24 25	1	23		_		2	
	1			46		2	
26		25		47			
27	1	26		48		1	
28	1	27		50		14	
29	1	28		51		1(
30	1	29		53		18	
31	1	30		55		20	
32	1	31		57	'3	23	3

Title	Penetration Data Report						
Project Name	MC-TP-2 DCP	MC-TP-2 DCP Test at 0.50m to 1.29m					
Chainage (km)	0.5		Surface Type	Unpaved			
Direction	@0.50-1.29		Thickness (mm)	0			
Location/Offset	Carriageway		Base Type				
Cone Angle							
(degrees)	60		Thickness (mm)				
				Penetration		Penetration	
No.	Blows		Cumulative Blows			Rate	
33	1	32		587	14	4	
34	1	33		592	5		
35	1	34		617	2		
36	1	35		632	1:		
37	1	36		647	1:		
38	1	37	6	63	16		
39	1	38		680	17		
40	1	39		700	20		
41	1	40		712	12		
42	1	41	7	725	1:		
43	1	42		742	17		
44	1	43		757	1:		
45	1	44	7	770	1:		
46	1	45	7	780	1(0	
47	1	46	7	790	1(
48	1	47	3	306	16	3	
49	1	48	3	314	8		
50	1	49	3	323	9		
51	1	50	3	333	1()	
52	1	51	3	334	1		
53	1	52	3	350	16	6	

Title	Penetration Data Report						
Project Name	MC-CD-4 DCP Test Result						
Chainage (km)	0	Surface Type	Unpaved				
Direction	@0.062.4	Thickness (mm)	0				
Location/ Offset	Carriageway	Base Type					
Cone Angle (degrees)	60	Thickness (mm)					
Zero Error (mm)	144	Surface Moisture	Dry				
			Penetration	Penetration			
No.	Blows	Cumulative Blows	Depth	Rate			
1	0	0	144	0			
2	2	2	165	10.5			
3	2	4	177	6			
4	2	6	190	6.5			
5	2	8	200	5			
6	2	10	210	5			
7	2	12	234	12			
8	2	14	245	5.5			
9	2	16	255	5			
10	2	18	265	5			
11	2	20	275	5			
12	2	22	285	5			
13	2	24	295	5			

Title	Penetration Data Report						
Project Name	MC-CD-4 DCP Tes	MC-CD-4 DCP Test Result					
Chainage (km)	0	Surface Type	Unpaved				
Direction	@0.062.4	Thickness (mm)	0				
Location/ Offset	Carriageway	Base Type					
Cone Angle (degrees)	60	Thickness (mm)					
Zero Error (mm)	144	Surface Moisture	Dry				
			Penetration	Penetration			
No.	Blows	Cumulative Blows	Depth	Rate			
14	2	26	315	10			
15	2	28	338	11.5			
16	2	30	358	10			
17	2	32	385	13.5			
18	2	34	395	5			
19	2	36	409	7			
20	2	38	453	22			
21	2	40	481	14			
22	2	42	513	16			
23	2	44	540	13.5			
24	2	46	566	13			
25	2	48	598	16			
26	2	50	614	8			
27	2	52	638	12			
28	2	54	660	11			
29	2	56	685	12.5			
30	2	58	718	16.5			
31	2	60	737	9.5			
32	2	62	768	15.5			

Chainage (km)	1.6	Surface Type	Unpaved	MC-CD-4
Direction	@1.60-2.42m	Thickness (mm)	0	
Location/Offset	Carriageway	Base Type		
Cone Angle				
(degrees)	60	Thickness (mm)		
Zero Error (mm)	145	Surface Moisture	Dry	
		Cumulative	Penetration	
No.	Blows	Blows	Depth	Penetration Rate
1	0	0	145	0
2	1	1	185	40
3	1	2	220	35
4	1	3	250	30
5	1	4	275	25
6	1	5	295	20
7	1	6	305	10
8	1	7	330	25
9	1	8	350	20
10	1	9	370	20
11	1	10	390	20
12	1	11	410	20
13	1	12	428	18
14	1	13	440	12
15	1	14	460	20
16	1	15	480	20

Chainage (km)	1.6	Surface Type	Unpaved	MC-CD-4
Direction	@1.60-2.42m	Thickness (mm)	0	
Location/Offset	Carriageway	Base Type		
Cone Angle				
(degrees)	60	Thickness (mm)		
Zero Error (mm)	145	Surface Moisture	Dry	
		Cumulative	Penetration	
No.	Blows	Blows	Depth	Penetration Rate
17	1	16	515	35
18	1	17	535	20
19	1	18	555	20
20	1	19	570	15
21	2	21	595	12.5
22	2	23	620	12.5
23	2	25	645	12.5
24	2	27	675	15
25	2	29	700	12.5
26	2	31	720	10
27	2	33	755	17.5
28	2	35	785	15
29	2	37	815	15
30	2	39	845	15
31	2	41	865	10
32	2	43	885	10
33	2	45	915	15
34	2	47	935	10
35	2	49	960	12.5

Title	Penetration Data Report						
Project Name	MC-CD5 DCP	MC-CD5 DCP TEST RESUALT					
Chainage (km)	0	Surface Type	Unpaved				
Direction	@1.50m to	Thickness (mm)	0				
Location/Offset	Carriageway	Base Type					
Cone Angle (degrees)	60	Thickness (mm)					
Zero Error (mm)	195	Surface Moisture	Dry				
No.	Blows	Cumulative Blows	Penetration Depth	Penetration Rate			
1	0	0	195	0			
2	1	1	257	62			
3	1	2	317	60			
4	1	3	385	68			
5	1	4	480	95			
6	1	5	550	70			
7	1	6	600	50			
8	1	7	645	45			
9	1	8	685	40			
10	1	9	720	35			
11	1	10	760	40			
12	1	11	790	30			
13	1	12	822	32			
14	1	13	860	38			
15	1	14	890	30			
16	1	15	920	30			
17	1	16	973	53			

Title	Penetration Data Report				
Project Name	MC-CD5 DCP	TEST RESUALT			
Chainage (km)	0	Surface Type	Unpaved		
Direction	@1.50m to	Thickness (mm)	0		
Location/Offset	Carriageway	Base Type			
Cone Angle (degrees)	60	Thickness (mm)			
Zero Error (mm)	195	Surface Moisture	Dry		
No.	Blows	Cumulative Blows	Penetration Depth	Penetration Rate	
18	1	17	1055	82	
19	1	18	1167	112	
20	1	19	1308	141	
21	1	20	1473	165	
Remarks:					

Chainage (km)	1	Surface Type	Unpaved	
Direction		Thickness (mm)	0	
Location/Offset	Carriageway	Base Type		
Cone Angle	U V			
(degrees)	60	Thickness (mm)		
Zero Error (mm)	165	Surface Moisture	Dry	MC-CD5
No.	Blows	Cumulative Blows	Penetration Depth	Penetration Rate
1	0	0	165	0
2	1	1	191	26
3	1	2	225	34
4	1	3	253	28
5	1	4	276	23
6	1	5	301	25
7	1	6	323	22
8	1	7	342	19
9	1	8	360	18
10	1	9	380	20
11	1	10	403	23
12	1	11	415	12
13	1	12	433	18
14	1	13	453	20
15	1	14	475	22
16	1	15	500	25
17	1	16	515	15
18	1	17	535	20
19	1	18	560	25
20	1	19	580	20
21	1	20	600	20
22	1	21	620	20
23	1	22	640	20
24	1	23	660	20
25	1	24	670	10
26	1	25	692	22
27	1	26	716	24
28	1	27	735	19
29	1	28	755	20
30	1	29	775	20

Chainage (km)	1	Surface Type	Unpaved	
Direction		Thickness (mm)	0	
Location/Offset	Carriageway	Base Type		
Cone Angle				
(degrees)	60	Thickness (mm)		
Zero Error (mm)	165	Surface Moisture	Dry	MC-CD5
		Cumulative	Penetration	
No.	Blows	Blows	Depth	Penetration Rate
31	1	30	790	15
32	1	31	810	20
33	1	32	825	15
34	1	33	845	20
35	1	34	870	25
36	1	35	890	20
37	1	36	910	20
38	1	37	930	20

Title	Penetration Data Report			
Project Name	MC-CD3			
Chainage (km)	0	Surface Type	Unpaved	
Direction		Thickness (mm)	0	
	Carriagewa			
Location/Offset	У	Base Type		
Cone Angle				
(degrees)	60	Thickness (mm)		
Zero Error (mm)	1	Surface Moisture	Dry	
			Penetration	
No.	Blows	Cumulative Blows	Depth	Penetration Rate
1	0	0	182	0
2	1	1	225	43
3	1	2	249	24
4	1	3	269	20
5	1	4	289	20
6	1	5	305	16
7	1	6	322	17
8	1	7	339	17
9	1	8	354	15
10	1	9	368	14
11	1	10	380	12
12	1	11	392	12
13	1	12	402	10
14	1	13	412	10
15	2	15	432	10
16	2	17	450	9
17	2	19	465	7.5
18	2	21	482	8.5
19	2	23	498	8
20	2	25	514	8
21	2	27	528	7
22	2	29	544	8
23	2	31	559	7.5
24	2	33	578	9.5
25	2	35	590	6

Title	Penetration Data Report					
Project Name	MC-CD3	MC-CD3				
Chainage (km)	0	Surface Type	Unpaved			
Direction		Thickness (mm)	0			
	Carriagewa					
Location/Offset	У	Base Type				
Cone Angle						
(degrees)	60	Thickness (mm)				
Zero Error (mm)	1	Surface Moisture	Dry			
			Penetration			
No.	Blows	Cumulative Blows	Depth	Penetration Rate		
26	2	37	600	5		
27	2	39	622	11		
28	2	41	639	8.5		
29	2	43	650	5.5		
30	2	45	664	7		
31	2	47	672	4		
32	2	49	690	9		
33	2	51	704	7		
34	2	53	714	5		
35	2	55	734	10		
36	2	57	749	7.5		
37	2	59	764	7.5		
38	2	61	779	7.5		
39	2	63	792	6.5		
40	2	65	802	5		
41	2	67	819	8.5		
42	2	69	832	6.5		
43	2	71	842	5		
44	2	73	854	6		
45	2	75	862	4		
46	2	77	880	9		
47	2	79	900	10		
48	2	81	912	6		
49	2	83	930	9		

MAIN CANAL FARM ROAD DCP TEST DATA

Title	Penetration Data Report				
Project Name	Omo valley proj	ect main canal DCP tes	st result		
Chainage (km)	0	Surface Type	Unpaved		
Direction	0	Thickness (mm)	0		
Location/Offset	Carriageway	Base Type			
Cone Angle (degrees)	60	Thickness (mm)			
No	Blowe	Cumulative Blows	Penetration	Penetration	
No.	Blows	Cumulative blows	Depth	Rate	
1	0	0	160	0	
2	1	1	235	75	
3	1	2	275	40	
4	1	3	310	35	
5	1	4	332	22	
6	1	5	348	16	
7	1	6	364	16	
8	1	7	378	14	

Title	Penetration Data Report				
Project Name	Omo valley project main canal DCP test result				
Chainage (km)	0 Surface Type Unpaved				
Direction	0	Thickness (mm)	0		
Location/Offset	Carriageway	Base Type			
Cone Angle (degrees)	60	Thickness (mm)			
No.	Blows	Cumulative Blows	Penetration Depth	Penetration Rate	
9	1	8	395	17	
10	1	9	415	20	
11	1	10	432	17	
12	1	11	450	18	
13	1	12	470	20	
14	1	13	485	15	
15	1	14	500	15	
16	1	15	515	15	
17	1	16	530	15	
18	1	17	540	10	
19	1	18	554	14	
20	1	19	565	11	
21	1	20	577	12	
22	1	21	593	16	
23	1	22	610	17	
24	1	23	625	15	
25	1	24	642	17	
26	1	25	652	10	
27	1	26	662	10	
28	1	27	675	13	
29	1	28	692	17	
30	1	29	704	12	
Remarks:					

Title	Penetration Data Report						
Project Name	Omo valley proj	Omo valley project main canal DCP test result					
Chainage (km)	1	Surface Type	Unpaved				
Direction		Thickness (mm)	0				
Location/Offset	Carriageway	Base Type					
Cone Angle(degrees)	60	Thickness (mm)					
No.	Blows	Cumulative Blows	Penetration Depth	Penetration Rate			
1	0	0	112	0			
2	1	1	148	36			
3	1	2	170	22			
4	1	3	185	15			
5	1	4	206	21			
6	1	5	222	16			
7	1	6	248	26			
8	1	7	250	2			
9	1	8	260	10			
10	1	9	270	10			
11	2	11	290	10			
12	2	13	307	8.5			

Title	Penetration Data Report				
Project Name	Omo valley project main canal DCP test result				
Chainage (km)	1	Surface Type	Unpaved		
Direction		Thickness (mm)	0		
Location/Offset	Carriageway	Base Type			
Cone	60	Thickness (mm)			
Angle(degrees)	00				
No.	Blows	Cumulative	Penetration	Penetration Rate	
		Blows	Depth		
13	2	15	324	8.5	
14	2	17	342	9	
15	2	19	356	7	
16	2	21	380	12	
17	2	23	394	7	
18	2	25	408	7	
19	2	27	422	7	
20	2	29	435	6.5	
21	2	31	445	5	
22	2	33	460	7.5	
23	2	35	470	5	
24	2	37	485	7.5	
25	2	39	493	4	
26	2	41	510	8.5	
27	2	43	522	6	
28	2	45	535	6.5	
29	2	47	550	7.5	
30	2	49	560	5	
31	2	51	570	5	
32	2	53	580	5	
33	2	55	590	5	
34	2	57	600	5	
35	2	59	610	5	
36	2	61	620	5	
37	2	63	630	5	
38	2	65	640	5	
39	2	67	650	5	
40	2	69	660	5	
41	2	71	670	5	
42	2	73	680	5	
43	2	75	690	5	
43	2	77	700	5	
44 45	2	79	710	5	
46	2	81	710	5	
40	2	83		5	
			730	5	
48	2	85	740		
49	2	87	750	5	
50	2	89	760	5	
51 Demosrie	2	91	770	5	
Remarks:					

Title

Penetration Data Report

Project Name	Omo valley project main canal DCP test result				
Chainage (km)	2	Surface Type	Unpaved		
Direction		Thickness (mm)	0		
Location/ Offset	Carriageway	Base Type			
Cone Angle (degrees)	60	Thickness (mm)			
No.	Blows	Cumulative Blows	Penetration Depth	Penetration Rate	
1	0	0	102	0	
2	1	1	125	23	
3	1	2	135	10	
4	1	3	142	7	
5	1	4	152	10	
6	2	6	160	4	
7	2	8	170	5	
8	2	10	175	2.5	
9	2	10	183	4	
10	2	12	187	2	
11	2	16	190	1.5	
12	2	18	190	4	
13	2	20	203	2.5	
14	2	20	205	1	
15	2	24	210	2.5	
16	2	24 26	210	3.5	
17	2	28	217	2	
	2	30	221	1.5	
18	2	30	232	4	
19					
20	2	34	235	1.5	
21	2	36	242	3.5	
22	2	38	247	2.5	
23	2	40	255	4	
24	2	42	257	1	
25	2	44	260	1.5	
26	2	46	265	2.5	
27	2	48	270	2.5	
28	2	50	275	2.5	
29	2	52	280	2.5	
30	2	54	284	2	
31	2	56	292	4	
32	2	58	297	2.5	
33	2	60	300	1.5	
34	2	62	312	6	
35	2	64	317	2.5	
36	2	66	322	2.5	
37	2	68	328	3	
38	2	70	333	2.5	
39	2	72	337	2	
40	2	74	340	1.5	
41	2	76	346	3	
42	2	78	350	2	
43	2	80	352	1	
44	5	85	358	1.2	
45	5	90	375	3.4	

Title	Penetration Data Report			
Project Name	Omo valley proj	ect main canal DCP te	est result	
Chainage (km)	2	Surface Type	Unpaved	
Direction		Thickness (mm)	0	
Location/ Offset	Carriageway	Base Type		
Cone Angle (degrees)	60	Thickness (mm)		
No.	Blows	Cumulative Blows	Penetration Depth	Penetration Rate
46	5	95	389	2.8
47	5	100	397	1.6
48	5	105	405	1.6
49	5	110	417	2.4
50	5	115	444	5.4
51	5	120	478	6.8
52	5	125	518	8
53	5	130	577	11.8
54	5	135	625	9.6
55	5	140	670	9
56	5	145	697	5.4
57	5	150	735	7.6
58	5	155	766	6.2
59	5	160	800	6.8
60	5	165	830	6
Remarks:				

Title	Penetration Data Report					
Project Name	Omo valley projec	Omo valley project main canal DCP test result				
Chainage (km)	3	Surface Type	Unpaved			
Direction		Thickness (mm)	0			
Location/ Offset	Carriageway	Base Type				
Cone Angle (degrees)	60	Thickness (mm)				
No.	Blows	Cumulative	Penetration	Penetration		
		Blows	Depth	Rate		
1	0	0	110	0		
2	1	1	117	7		
3	1	2	122	5		
4	1	3	127	5		
5	2	5	132	2.5		
6	2	7	142	5		
7	2	9	147	2.5		
8	2	11	154	3.5		
9	2	13	157	1.5		
10	2	15	160	1.5		
11	2	17	165	2.5		
12	2	19	172	3.5		
13	2	21	176	2		
14	2	23	182	3		
15	2	25	186	2		
16	2	27	192	3		
17	2	29	196	2		

Title	Penetration Data Report					
Project Name	Omo valley projec	Omo valley project main canal DCP test result				
Chainage (km)	3	Surface Type	Unpaved			
Direction		Thickness (mm)	0			
Location/ Offset	Carriageway	Base Type				
Cone Angle	60	Thickness (mm)				
(degrees)						
No.	Blows	Cumulative	Penetration	Penetration		
		Blows	Depth	Rate		
18	2	31	200	2		
19	2	33	203	1.5		
20	5	38	213	2		
21	5	43	226	2.6		
22	5	48	243	3.4		
23	5	53	260	3.4		
24	5	58	278	3.6		
25	5	63	295	3.4		
26	5	68	320	5		
27	5	73	345	5		
28	5	78	372	5.4		
29	5	83	406	6.8		
30	5	88	504	19.6		
31	5	93	528	4.8		
32	5	98	627	19.8		
33	5	103	710	16.6		
34	5	108	792	16.4		
35	5	113	872	16		
36	5	118	952	16		
Remarks:						

Title		Penetration Data Report					
Project Name	Omo valley proje	Omo valley project main canal DCP test result					
Chainage (km)	4	Surface Type	Unpaved				
Direction		Thickness (mm)	0				
Location/Offset	Carriageway	Base Type					
Cone Angle (degrees)	60	Thickness (mm)					
No.	Blows	Cumulative Blows	Penetration Depth	Penetration Rate			
1	0	0	105	0			
2	1	1	115	10			
3	1	2	116	1			
4	1	3	120	4			
5	1	4	125	5			
6	1	5	127	2			
7	1	6	132	5			
8	1	7	133	1			
9	1	8	137	4			
10	1	9	143	6			
11	1	10	144	1			
12	2	12	147	1.5			
13	2	14	153	3			

Title	Penetration Data Report			
Project Name	Omo valley projec	t main canal DCP tes		
Chainage (km)	4	Surface Type	Unpaved	
Direction		Thickness (mm)	0	
Location/Offset	Carriageway	Base Type		
Cone Angle (degrees)	60	Thickness (mm)		
No.	Blows	Cumulative Blows	Penetration Depth	Penetration Rate
14	2	16	161	4
15	2	18	167	3
16	2	20	173	3
17	2	22	181	4
18	2	24	189	4
19	2	26	191	1
20	2	28	200	4.5
21	2	30	210	5
22	2	32	219	4.5
23	2	34	228	4.5
24	2	36	238	5
25	2	38	252	7
26	2	40	263	5.5
27	2	42	272	4.5
28	2	44	282	5
29	2	46	293	5.5
30	2	48	306	6.5
31	2	50	316	5
32	2	52	327	5.5
33	2	54	340	6.5
34	2	56	353	6.5
35	2	58	365	6
36	2	60	379	7
37	2	62	392	6.5
38	2	64	402	5
39	2	66	408	3
	2	68		5
40			418	
41	2	70	426	4
42	2	72	435	4.5
43	2	74	442	3.5
44	2	76	451	4.5
45	2	78	458	3.5
46	2	80	466	4
47	2	82	478	6
48	2	84	482	2
49	2	86	490	4
50	2	88	497	3.5
51	2	90	509	6
52	2	92	523	7
53	2	94	536	6.5
54	2	96	553	8.5
55	2	98	574	10.5
56	2	100	614	20
57	2	102	660	23

Title	Penetration Data	Penetration Data Report					
Project Name	Omo valley proje	Omo valley project main canal DCP test result					
Chainage (km)	4	Surface Type Unpaved					
Direction		Thickness (mm)	0				
Location/Offset	Carriageway	Base Type					
Cone Angle	60	Thickness (mm)					
(degrees)							
No.	Blows	Cumulative Blows	Penetration	Penetration			
			Depth	Rate			
58	2	104	706	23			
59	2	106	757	25.5			
60	2	108	800	21.5			
61	2	110	833	16.5			
62	2	112	866	16.5			
63	2	114	905	19.5			
64	2	116	940	17.5			
Remarks:							

Title	Penetration Data Report				
Project Name	Omo valley proj	Omo valley project main canal DCP test result			
Chainage (km)	5	Surface Type	Unpaved		
Direction		Thickness (mm)	0		
Location/Offset	Carriageway	Base Type			
Cone Angle	60	Thickness (mm)			
(degrees)					
No.	Blows	Cumulative Blows	Penetration Depth	Penetration Rate	
1	0	0	180	0	
2	1	1	190	10	
3	1	2	204	14	
4	1	3	205	1	
5	1	4	210	5	
6	1	5	212	2	
7	1	6	216	4	
8	1	7	222	6	
9	1	8	226	4	
10	1	9	230	4	
11	1	10	234	4	
12	1	11	237	3	
13	1	12	240	3	
14	1	13	241	1	
15	1	14	244	3	
16	1	15	247	3	
17	1	16	248	1	
18	1	17	249	1	
19	1	18	250	1	
20	1	19	255	5	
21	1	20	258	3	
22	1	21	260	2	
23	1	22	264	4 May 2015	

Title	Penetration Data Report			
Project Name		ect main canal DCP tes	st result	
Chainage (km)	5	Surface Type	Unpaved	
Direction		Thickness (mm)	0	
Location/Offset	Carriageway	Base Type		
Cone Angle	60	Thickness (mm)		
(degrees)				
No.	Blows	Cumulative Blows	Penetration Depth	Penetration Rate
24	1	23	267	3
25	1	24	270	3
26	1	25	273	3
27	1	26	276	3
28	1	27	278	2
29	1	28	282	4
30	1	29	285	3
31	1	30	288	3
32	1	31	290	2
33	1	32	300	10
34	1	33	303	3
35	1	34	305	2
36	1	35	307	2
37	1	36	308	1
38	1	37	310	2
39	1	38	311	1
40	1	39	313	2
41	1	40	320	7
42	1	41	322	2
43	1	42	324	2
44	1	43	326	2
45	1	44	330	4
46	1	45	332	2
47	1	46	334	2
48	1	40	338	4
40	1	48	340	2
	1	40 49		5
50 51			345	3
	1	50	348	-
52	1	51	350	2
53	1	52	355	5
54	1	53	360	5
55	1	54	365	5
56	1	55	370	5
57	1	56	372	2
58	1	57	375	3
59	1	58	380	5
60	1	59	384	4
61	1	60	388	4
62	1	61	390	2
63	1	62	393	3
64	1	63	404	11
65	1	64	405	1
66	1	65	408	3
67	1	66	413	5

Title	Penetration Data Report				
Project Name	Omo valley project main canal DCP test result				
Chainage (km)	5	Surface Type	Unpaved		
Direction		Thickness (mm)	0		
Location/Offset	Carriageway	Base Type			
Cone Angle	60	Thickness (mm)			
(degrees)					
No.	Blows	Cumulative Blows	Penetration	Penetration	
			Depth	Rate	
68	1	67	423	10	
69	1	68	425	2	
70	1	69	427	2	
71	1	70	435	8	
72	1	71	440	5	
73	1	72	443	3	
74	1	73	453	10	
75	1	74	460	7	
76	1	75	465	5	
77	1	76	466	1	
Remarks:					

Title	Penetration Data Report					
Project Name	Omo valley proje	Omo valley project main canal DCP test result				
Chainage (km)	6	Surface Type	Unpaved			
Direction		Thickness (mm)	0			
Location/Offset	Carriageway	Base Type				
Cone Angle	60	Thickness (mm)				
(degrees)						
	Blows	Cumulative	Penetration	Penetration Rate		
No.		Blows	Depth			
1	0	0	183	0		
2	1	1	186	3		
3	1	2	188	2		
4	1	3	192	4		
5	1	4	195	3		
6	1	5	196	1		
7	1	6	197	1		
8	1	7	200	3		
9	1	8	202	2		
10	1	9	204	2		
11	2	11	205	0.5		
12	2	13	208	1.5		
13	2	15	210	1		
14	2	17	212	1		
15	5	22	215	0.6		
16	5	27	220	1		
17	5	32	222	0.4		
18	5	37	223	0.2		
19	5	42	224	0.2		
20	5	47	227	0.6		
21	5	52	232	1		
22	5	57	237	1		
23	5	62	240	0.6		

Title	Penetration Data Report					
Project Name	Omo valley projec	Omo valley project main canal DCP test result				
Chainage (km)	6	Surface Type	Unpaved			
Direction		Thickness (mm)	0			
Location/Offset	Carriageway	Base Type				
Cone Angle	60	Thickness (mm)				
(degrees)						
	Blows	Cumulative	Penetration	Penetration Rate		
No.		Blows	Depth			
24	5	67	241	0.2		
25	5	72	243	0.4		
26	5	77	244	0.2		
27	5	82	246	0.4		
28	10	92	250	0.4		
29	10	102	255	0.5		
30	10	112	257	0.2		
31	10	122	266	0.9		
32	10	132	278	1.2		
33	10	142	322	4.4		
34	10	152	404	8.2		
35	10	162	550	14.6		
36	10	172	803	25.3		
37	10	182	910	10.7		
Remarks:						

Title	Penetration Data Report					
Project Name	Omo valley proj	Omo valley project main canal DCP test result				
Chainage (km)	7	Surface Type	Unpaved			
Direction		Thickness (mm)	0			
Location/Offset	Carriageway	Base Type				
Cone Angle	60	Thickness (mm)				
(degrees)						
No.	Blows	Cumulative Blows	Penetration Depth	Penetration Rate		
1	0	0	185	0		
2	1	1	192	7		
3	1	2	200	8		
4	1	3	206	6		
5	1	4	212	6		
6	1	5	215	3		
7	1	6	218	3		
8	1	7	223	5		
9	1	8	226	3		
10	1	9	230	4		
11	1	10	232	2		
12	1	11	234	2		
13	1	12	236	2		
14	1	13	239	3		
15	1	14	245	6		
16	1	15	248	3		
17	1	16	252	4		
18	1	17	253	1		
19	1	18	256	3		

Title	Penetration Data Report				
Project Name	Omo valley project main canal DCP test result				
Chainage (km)	7	Surface Type	Unpaved		
Direction		Thickness (mm)	0		
Location/Offset	Carriageway	Base Type			
Cone Angle	60	Thickness (mm)			
(degrees)					
No.	Blows	Cumulative	Penetration	Penetration Rate	
		Blows	Depth		
20	1	19	262	6	
21	1	20	265	3	
22	1	21	268	3	
23	1	22	273	5	
24	1	23	278	5	
25	1	24	282	4	
26	1	25	287	5	
27	1	26	292	5	
28	1	27	302	10	
29	1	28	306	4	
30	1	29	307	1	
31	1	30	314	7	
32	1	31	322	8	
33	1	32	327	5	
34	1	33	336	9	
35	1	34	343	7	
36	1	35	348	5	
37	1	36	356	8	
38	1	37	365	9	
39	1	38	373	8	
40	1	39	380	7	
41	1	40	390	10	
42	1	41	400	10	
43	1	42	410	10	
44	1	43	423	13	
45	1	44	434	11	
46	1	45	447	13	
47	1	46	462	15	
48	1	47	476	14	
49	1	48	492	16	
50	1	49	506	14	
51	1	50	520	14	
52	1	51	536	16	
53	1	52	545	9	
54	1	53	562	17	
55	1	54	574	12	
56	1	55	588	14	
57	1	56	602	14	
58	1	57	613	11	
59	1	58	635	22	
60	1	59	640	5	
61	1	60	653	13	
62	1	61	666	13	
63	1	62	676	10	

Title	Penetration Data Report				
Project Name	Omo valley proje	ect main canal DCP te	st result		
Chainage (km)	7	Surface Type	Unpaved		
Direction		Thickness (mm)	0		
Location/Offset	Carriageway	Base Type			
Cone Angle	60	Thickness (mm)			
(degrees)					
No.	Blows	Cumulative	Penetration	Penetration Rate	
		Blows	Depth		
64	1	63	682	6	
65	1	64	692	10	
66	1	65	702	10	
67	1	66	712	10	
68	1	67	723	11	
69	1	68	734	11	
70	1	69	742	8	
71	1	70	753	11	
72	1	71	764	11	
73	1	72	774	10	
74	1	73	780	6	
75	1	74	790	10	
76	1	75	800	10	
77	1	76	810	10	
78	1	77	820	10	
79	1	78	824	4	
80	1	79	830	6	
81	1	80	840	10	
82	1	81	850	10	
83	1	82	855	5	
84	1	83	860	5	
85	1	84	870	10	
86		85	876	6	
87	1	86		4	
	1	87	880		
88	1		890	10	
89	1	88	900	10	
Remarks:					
Title	Penetration Data				
Project Name		ect main canal DCP te			
Chainage (km)	8	Surface Type	Unpaved		
Direction		Thickness (mm)	0		
Location/ Offset	Carriageway	Base Type			
Cone Angle (degrees)	60	Thickness (mm)			
No.	Blows	Cumulative Blows	Penetration	Penetration Rate	
1	0	0	Depth 190	0	
2	1	1	195	5	
3	1	2	200	5	
4	1	3	200	8	
5		4		2	
	1		210		
6	1	5	215	5	
7	1	6	218	3	
8	1	7	222	4	

Title	Penetration Data Report					
Project Name	Omo valley proj	Omo valley project main canal DCP test result				
Chainage (km)	7	Surface Type	Unpaved			
Direction		Thickness (mm)	0			
Location/Offset	Carriageway	Base Type				
Cone Angle	60	Thickness (mm)				
(degrees)						
No.	Blows	Cumulative	Penetration	Penetration Rate		
		Blows	Depth			
9	1	8	225	3		
10	1	9	228	3		
11	1	10	230	2		
12	1	11	231	1		
13	1	12	235	4		
14	1	13	236	1		
15	2	15	238	1		
16	2	17	240	1		
17	2	19	244	2		
18	2	21	245	0.5		
19	2	23	248	1.5		
20	2	25	250	1		
21	2	27	251	0.5		
22	2	29	253	1		
23	2	31	254	0.5		
24	2	33	256	1		
25	2	35	258	1		
26	2	37	263	2.5		
27	2	39	265	1		
28	2	41	267	1		
29	2	43	268	0.5		
30	2	45	273	2.5		
31	2	47	274	0.5		
32	5	52	280	1.2		
33	5	57	284	0.8		
34	5	62	290	1.2		
35	5	67	303	2.6		
36	5	72	308	1		
37	5	77	328	4		
38	5	82	359	6.2		
39	5	87	400	8.2		
40	5	92	500	20		
41	5	97	517	3.4		
42	5	102	573	11.2		
43	5	107	620	9.4		
44	5	112	655	7		
45	5	117	696	8.2		
46	5	122	740	8.8		
47	5	127	782	8.4		
48	5	132	826	8.8		
49	5	137	870	8.8		
				0.0		
Remarks:						

Title Penetration Data Report				
Project Name	Omo valley proj	ect main canal DCP te	est result	
Chainage (km)	9	Surface Type	Unpaved	
Direction		Thickness (mm)	0	
Location/ Offset	Carriageway	Base Type		
Cone Angle	60	Thickness (mm)		
(degrees)				
	Blows	Cumulative	Penetration	Penetration Rate
No.		Blows	Depth	
1	0	0	200	0
2	1	1	206	6
3	1	2	210	4
4	1	3	213	3
5	1	4	215	2
6	1	5	220	5
7	1	6	225	5
8	1	7	230	5
9	1	8	235	5
10	1	9	240	5
11	1	10	242	2
12	1	11	245	3
13	1	12	250	5
14	1	13	255	5
15	1	14	258	3
16	1	15	260	2
17	1	16	263	3
18	1	17	266	3
19	1	18	270	4
20	1	19	275	5
21	1	20	277	2
22	1	21	280	3
23	1	22	282	2
24	1	23	284	2
25	1	24	286	2
26	1	25	291	5
27	1	26	295	4
28	1	27	300	5
29	1	28	305	5
30	1	29	307	2
31	1	30	313	6
32	1	31	317	4
33	1	32	320	3
34	1	33	323	3
35	1	34	326	3
36	1	35	330	4
37	1	36	335	5
38	1	37	340	5
39	1	38	343	3
40	1	39	348	5
40 41	1	40	348	4
41 42	1	40		5
	-		357	3
43	1	42	360	
44	1	43	363	3

Title	Penetration Dat	a Report			
Project Name	Omo valley project main canal DCP test result				
Chainage (km)	9	Surface Type	Unpaved		
Direction		Thickness (mm)	0		
Location/ Offset	Carriageway	Base Type			
Cone Angle	60	Thickness (mm)			
(degrees)					
	Blows	Cumulative	Penetration	Penetration Rate	
No.		Blows	Depth		
45	1	44	367	4	
46	1	45	372	5	
47	1	46	377	5	
48	1	47	383	6	
49	1	48	391	8	
50	1	49	397	6	
51	1	50	402	5	
52	1	51	407	5	
53	1	52	412	5	
54	1	53	418	6	
55	1	54	423	5	
56	1	55	430	7	
57	1	56	438	8	
58	1	57	447	9	
59	1	58	456	9	
60	1	59	467	11	
61	1	60	477	10	
62	1	61	485	8	
63	1	62	498	13	
64	1	63	508	10	
65	1	64	521	13	
66	1	65	534	13	
67	1	66	547	13	
68	1	67	562	15	
69	1	68	575	13	
70	1	69	588	13	
71	1	70	607	19	
72	1	71	628	21	
73	1	72	646	18	
74	1	73	668	22	
75	1	74	687	19	
76	1	75	708	21	
77	1	76	734	26	
78	1	77	762	28	
79	1	78	796	34	
80	1	79	824	28	
81	1	80	854	30	
82	1	81	874	20	
83	1	82	900	26	
84	1	83	923	23	
85	1	84	940	17	
Remarks:					

T 141	
Title	Penetration Data Report

Project Name	DCP test along	primary canal-1		
Chainage (km)	0	Surface Type	Unpaved	
Location/Offset	Carriageway	Base Type	-	
Cone Angle				
(degrees)	60	Thickness (mm)		
No.	Blows	Cumulative Blows	Penetration Depth	Penetration Rate
1	0	0	220	0
2	1	1	240	20
3	1	2	260	20
4	1	3	280	20
5	1	4	292	12
6	1	5	306	14
7	1	6	318	12
8	1	7	332	14
9	1	8	344	12
10	1	9	353	9
11	1	10	373	20
12	1	11	383	10
13	1	12	397	14
14	1	13	407	10
15	1	14	423	16
16	1	15	433	10
17	1	16	446	13
18	1	17	456	10
19	1	18	470	14
20	1	19	482	12
21	1	20	492	10
22	1	21	508	16
23	1	22	515	7
24	1	23	533	18
25	1	24	548	15
26	1	25	568	20
27	1	26	580	12
28	1	27	600	20
29	1	28	615	15
30	1	29	630	15
31	1	30	643	13
32	1	31	657	14
33	1	32	668	11
34	1	33	685	17
35	1	34	700	15
36	1	35	722	22
37	1	36	732	10
38	1	37	750	18
39	1	38	766	16
40	1	39	785	19
41	1	40	800	15
42	1	41	820	20
43	1	42	840	20
44	1	43	860	20
45	1	44	890	30
46	1	45	910	20

Title	Penetration Data Report					
Project Name	DCP test along	DCP test along primary canal-1				
Chainage (km)	0	Surface Type	Unpaved			
Location/Offset	Carriageway	Base Type				
Cone Angle						
(degrees)	60	Thickness (mm)				
			Penetration	Penetration		
No.	Blows	Cumulative Blows	Depth	Rate		
47	1	46	940	30		
48	1	47	960	20		
Remarks:						

Chainage (km)	1.7	Surface Type	Unpaved	
Location/Offset	Carriageway	Base Type		
Cone Angle				
(degrees)	60	Thickness (mm)		
Zero Error (mm)	0	Surface Moisture	Dry	
		Cumulative	Penetration	
No.	Blows	Blows	Depth	Penetration Rate
1	0	0	240	0
2	1	1	341	101
3	1	2	423	82
4	1	3	500	77
5	1	4	560	60
6	1	5	623	63
7	1	6	673	50
8	1	7	725	52
9	1	8	760	35
10	1	9	782	22
11	1	10	810	28
12	1	11	833	23
13	1	12	850	17
14	1	13	864	14
15	1	14	892	28
16	1	15	912	20
17	1	16	934	22
18	1	17	938	4
19	1	18	950	12
20	1	19	964	14
21	1	20	978	14
22	1	21	984	6
23	1	22	1000	16
Remarks:				
Chainage (km)	3	Surface Type	Unpaved	
Direction		Thickness (mm)	0	
Location/Offset	Carriageway	Base Type		
Cone Angle				
(degrees)	60	Thickness (mm)		
Zero Error (mm)	0	Surface Moisture	Dry	
		Cumulative	Penetration	Penetration
No.	Blows	Blows	Depth	Rate
1	0	0	245	0

Chainage (km)	1.7	Surface Type	Unpaved	
Location/Offset	Carriageway	Base Type		
Cone Angle				
(degrees)	60	Thickness (mm)		
Zero Error (mm)	0	Surface Moisture	Dry	
		Cumulative	Penetration	
No.	Blows	Blows	Depth	Penetration Rate
No. 2	Blows 2	Blows 2	Depth 277	Penetration Rate
-				
2	2	2	277	16
2 3	2 10	2 12	277 395	16 11.8

Chainage (km)	4.5	Surface Type	Unpaved	
Location/Offset	Carriageway	Base Type		
Cone Angle				
(degrees)	60	Thickness (mm)		
Zero Error (mm)	0	Surface Moisture	Dry	
		Cumulative	Penetration	
No.	Blows	Blows	Depth	Penetration Rate
1	0	0	223	0
2	5	5	270	9.4
3	10	15	315	4.5
4	10	25	370	5.5
5	10	35	415	4.5
6	10	45	470	5.5
Remarks:				

Chainage (km)	5	Surface Type	Unpaved	
Location/Offset	Carriageway	Base Type	-	
Cone Angle (degrees)	60	Thickness (mm)		
Zero Error (mm)	0	Surface Moisture	Dry	
		Cumulative	Penetration	
No.	Blows	Blows	Depth	Penetration Rate
1	0	0	210	0
2	1	1	257	47
3	5	6	340	16.6
4	5	11	425	17
5	5	16	565	28
6	5	21	670	21
7	5	26	750	16
8	5	31	810	12
9	5	36	880	14
10	5	41	900	4
Remarks:				

PUMP STATION SITE DCP RESULT

Penetration Data Report					
Project	Omo Valle	Omo Valley Farm			
Site	Pump sta	Pump station-1 DCP test -1			
Test Depth (m)	1.0-1.73				
No.	Blows	Cumulative Blows	Penetration Depth	Penetration Rate	
1	0	0	200	0	

Penetration Data Re	eport					
Project	Omo Valley Farm					
Site	Pump station-1 DCP test -1					
Test Depth (m)	1.0-1.73					
No.	Blows	Cumulative Blows	Penetration Depth	Penetration Rate		
2	1	1	220	20		
3	1	2	230	10		
4	1	3	242	12		
5	1	4	253	11		
6	1	5	265	12		
7	1	6	276	11		
8	1	7	286	10		
9	1	8	295	9		
10	1	9	305	10		
11	1	10	311	6		
12	1	11	318	7		
13	1	12	326	8		
14	1	13	333	7		
15	1	14	341	8		
16	1	15	346	5		
17	1	16	350	4		
18	1	17	358	8		
19	1	18	365	7		
20	1	19	370	5		
21	1	20	380	10		
22	1	21	390	10		
23	2	23	400	5		
24	2	25	425	12.5		
25	2	27	442	8.5		
26	2	29	454	6		
27	2	31	465	5.5		
28	2	33	476	5.5		
29	2	35	490	7		
30	2	37	496	3		
31	2	39	510	7		
32	2	41	522	6		
33	2	43	535	6.5		
34	2	45	550	7.5		
35	2	45	562	6		
36	2	49	580	9		
37	2	51	595	7.5		
38	2	53	610	7.5		
38	2	55	623	6.5		
	2	57	635	6		
40 41	2	59	650	7.5		
41 42	2	61		30		
42	2		710	5		
	2	63	720	6		
44		65	732			
45	2	67	743	5.5		
46	2	69	760	8.5		
47	2	71	780	10		
48	2	73	805	12.5		
49	2	75	835	15		

Penetration Data F	Report				
Project	Omo Vall	ey Farm			
Site	Pump sta	tion-1 DCP test -1			
Test Depth (m)	1.0-1.73				
No.	Blows	Cumulative Blows	Penetration Depth	Penetration Rate	
50	2	77	860	12.5	
51	2	79	880	10	
52	2	81	910	15	
53	2	83	930	10	
Remarks:	Ave. pene	Ave. penetration= 9 mm/blow			

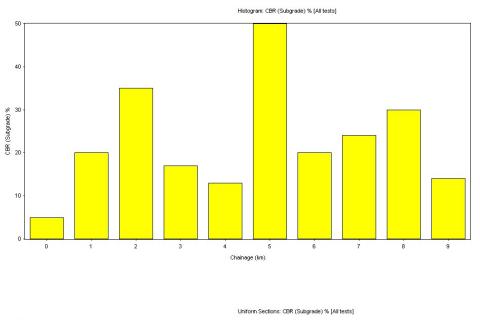
Penetration Data F	Report					
Project	Omo Valle	y Farm				
Site	Pump stati	Pump station-1 DCP test -2				
Test Depth (m)	1.73-2.51					
No.	Blows	Cumulative Blows	Pe	netration Depth	Penetration Rate	
1	0	0	13		0	
2	5	5	16		0.6	
3	5	10	18		0.4	
4	5	15	100		16.4	
5	5	20	12		5	
6	5	25	152	2	5.4	
7	5	30	182	2	6	
8	5	35	210)	5.6	
9	5	40	240)	6	
10	5	45	262	2	4.4	
11	5	50	280)	3.6	
12	5	55	30	5	5	
13	5	60	33	5	6	
14	5	65	360)	5	
15	5	70	385		5	
16	5	75	420)	7	
17	5	80	450)	6	
18	5	85	480		6	
19	5	90	510		6	
20	5	95	536		5.2	
21	5	100	567		6.2	
22	5	105	600		6.6	
23	5	110	630		6	
24	5	115	660		6	
25	5	120	700)	8	
26	5	125	730		6	
27	5	130	760		6	
28	5	135	790		6	
29	5	140	820		6	
30	5	145	850)	6	
31	5	150	87	5	5	
32	5	155)	5	
Remarks:	Ave. penetr	ation= 6 mm/blow				
Title		on Data Report				
Project Name		tion-2 (Booster Site)				
Depth (m)	0.0	Surface Type		Unpaved		
Direction		Thickness (mm)		0		

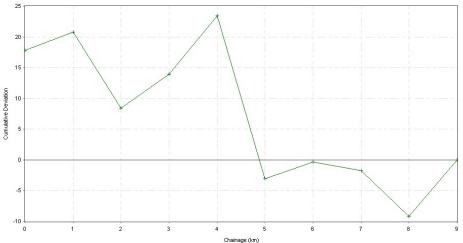
Location/Offset	Carriageway	Base Type		
Cone Angle				
(degrees)	60	Thickness (mm)		
		- · · -·	Penetration	
No.	Blows	Cumulative Blows	Depth	Penetration Rate
1	0	0	220	0
2	1	1	240	20
3	1	2	260	20
4	1	3	280	20
5	1	4	292	12
6	1	5	306	14
7	1	6	332	26
8	1	7	344	12
9	1	8	353	9
10	1	9	373	20
11	1	10	383	10
12	1	11	397	14
13	1	12	407	10
14	1	13	423	16
15	1	14	433	10
16	1	15	446	13
17	1	16	456	10
18	1	17	470	14
19	1	18	482	12
20	1	19	492	10
21	1	20	508	16
22	1	21	515	7
23	1	22	533	18
24	1	23	548	15
25	1	24	568	20
26	1	25	580	12
27	1	26	600	20
28	1	27	615	15
29	1	28	630	15
30	1	29	643	13
31	1	30	657	14
32	1	31	668	11
33	1	32	685	17
34	1	33	700	15
35	1	34	722	22
36	1	35	732	10
37	1	36	750	18
38	1	37	766	16
39	1	38	785	19
40	1	39	800	15
41	1	40	820	20
42	1	41	840	20
43	1	42	860	20
44	1	43	890	30
45	1	44	910	20
46	1	45	940	30
47	1	46	960	20
T1				

Penetration Data	Report						
Project		Omo Valley Farm					
Site		Pump station-1 DCP test -2					
Test Depth (m)	1.73-2.51						
No.	Blows	Cumulative Blows	Penetration Depth	Penetration Rate			
49	1	48	990	20			
50	1	49	1010	20			
51	1	50	1031	21			
52	1	51	1055	24			
53	1	52	1079	24			
54	1	53	1103	24			
55	1	54	1125	22			
56	1	55	1161	36			
57	1	56	1199	38			
58	1	57	1215	16			
59	1	58	1229	14			
60	1	59	1243	14			
61	1	60	1260	17			
62	1	61	1275	15			
63	1	62	1289	14			
64	1	63	1303	14			
65	1	64	1318	15			
66	1	65	1340	22			
67	1	66	1345	5			
68	1	67	1358	13			
69	1	68	1368	10			
70	1	69	1378	10			
71	1	70	1390	12			
72	1	71	1403	13			
73	1	72	1418	15			
74	1	73	1423	5			
75	1	74	1435	12			
76	1	75	1449	14			
77	1	76	1456	7			
78	1	77	1463	7			
79	1	78	1471	8			
80	1	79	1481	10			
81	1	80	1491	10			
Remarks:	avg. penetr	ation rate = 15.7					

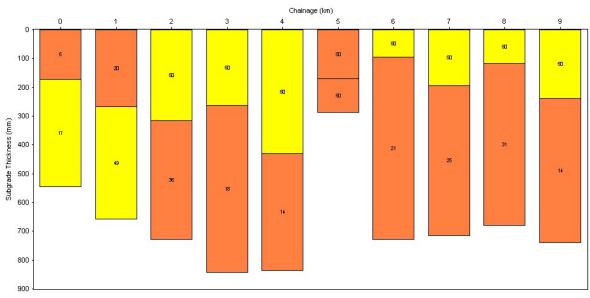
Depth (m)	1.5	Surface Type	Unpaved	PS-2-Test-2
Direction		Thickness (mm)	0	
Cone Angle				
(degrees)	60	Thickness (mm)		
Zero Error (mm)	2	Surface Moisture	Dry	
		Cumulative	Penetration	
No.	Blows	Blows	Depth	Penetration Rate
1	0	0	220	0
2	1	1	231	11
3	1	2	242	11
4	1	3	250	8
5	1	4	260	10
6	1	5	269	9

Depth (m)	1.5	Surface Type	Unpaved	PS-2-Test-2
Direction		Thickness (mm)	0	
Cone Angle				
(degrees)	60	Thickness (mm)		
Zero Error (mm)	2	Surface Moisture	Dry	
		Cumulative	Penetration	
No.	Blows	Blows	Depth	Penetration Rate
7	1	6	275	6
8	1	7	282	7
9	1	8	292	10
10	1	9	297	5
11	1	10	307	10
12	1	11	315	8
13	1	12	327	12
14	1	13	332	5
15	1	14	342	10
16	1	15	349	7
17	1	16	352	3
18	1	17	356	4
19	1	18	362	6
20	1	19	366	4
21	1	20	374	8
22	1	21	379	5
23	1	22	387	8
24	1	23	390	3
25	1	24	397	7
26	1	25	405	8
27	1	26	410	5
28	1	27	416	6
29	1	28	420	4
30	1	29	426	6
31	1	30	430	4
32	1	31	436	6
33	1	32	442	6
34	1	33	448	6
35	1	34	469	21
36	1	35	490	21
37	1	36	518	28
38	1	37	548	30
39	1	38	569	21
40	1	39	592	23
41	1	40	611	19
42	1	41	630	19
Remarks:	avg. penetration ra	ate = 9.8		

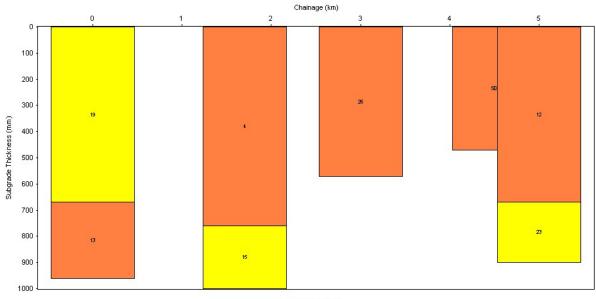

APPENDIX A-3: DCP Test summary


Title	Tests Summary	Report					
Project							
Name	Tertiary canal D	CP Test					
			Offset	Surface	Surface	Subgrade	
Test No.	Chainage (km)	Location	(m)	Туре	Moisture	CBR	SNP
1	0.1	Carriageway		Unpaved	0.51 (Dry)	8	1.08
2	1	Carriageway		Unpaved	0.51 (Dry)	11	1.3
3	6	Carriageway		Unpaved	0.51 (Dry)	14	1.49
4	8	Carriageway		Unpaved	0.51 (Dry)	15	1.54

Title Project Name	Tests Summary Report DCP test along primary canal-2 farm road					
Test No.	Chainage (km)	Location	Upper Layers Surface Type	Surface Moisture	Subgrade CBR	SNP
1	0	Carriageway	Unpaved	0.51 (Dry)	32	1.93
2	1	Carriageway	Unpaved	0.51 (Dry)	8	1.09
3	2	Carriageway	Unpaved	0.51 (Dry)	21	1.74
4	3	Carriageway	Unpaved	0.51 (Dry)	13	1.44
5	4	Carriageway	Unpaved	0.51 (Dry)	20	1.69
6	5	Carriageway	Unpaved	0.51 (Dry)	45	2.05


Title	Tests Summar	Tests Summary Report				
Project Name	DCP test along	primary canal-1				
Test No.	Chainage (km)	Location	Surface Type	Surface Moisture	Subgrade CBR	SNP
1	0	Carriageway	Unpaved	0.51 (Dry)	13	1.43
2	1.7	Carriageway	Unpaved	0.51 (Dry)	4	0.28
3	3	Carriageway	Unpaved	0.51 (Dry)	26	1.84
4	4.5	Carriageway	Unpaved	0.51 (Dry)	50	2.08
5	5	Carriageway	Unpaved	0.51 (Dry)	12	1.34

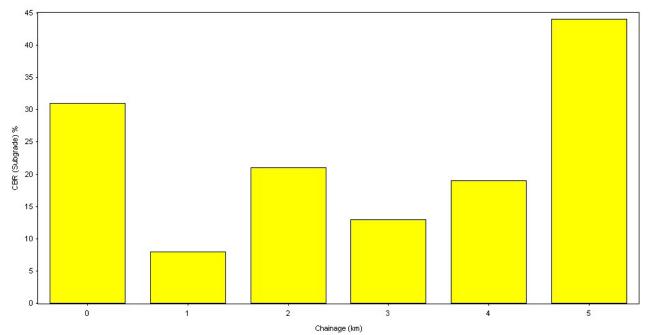
APPENDIX A-4: DCP Test CBR Graphs MAIN CANAL FARMROAD



Query: Minimum CBR (Subgrade) % [All tests]

Chainage (km)

Query: Minimum CBR (Subgrade) % [All tests]


Chainage (km)

MAIN CANAL-1 FARM ROAD GRAPHS

Query: Minimum CBR (Subgrade) % [All tests]

Chainage (km)

Histogram: CBR (Subgrade) % [All tests]

APPENDIX A-5:	Infiltration	test Raw Data
----------------------	--------------	---------------

C		Document No		Issue N	0.	Page No.		
		OF/WWDSE/		1		1 of 1		
Project	t: Omo Vall	ey Farm projec	t					
Title:	Infiltra	tion Rate Meas	surement	Form				
Test Pit	t no. MC-TF	P-1-IN1		Date: 2	3/04/07	Replication 1	Author:- A.T	
Surface	e Features:	- Flat surface fe	eature				UTM Readin	g
Test De	epth (m); 3.0)					N:191576	
							E:573650	
							Datum: ADIN	IDAN
		Cumulative	Depth	of		Cumulative	Infiltration	rate
	Interval	time	water (cm)	Intake	intake	(cm/hr)	
Local	(mm)	(min)	Initial	Final	(cm)	(cm)	Immediate	Mean
1:40	0	0	7.0	7.0	0.0	0.0	0	0
	2	2		7.2	0.2	0.2	6.0	6.0
	2	4		7.5	0.3	0.5	9.0	7.5
	2	6		7.6	0.1	0.6	3.0	6.0
	2	8		7.7	0.1	0.7	3.0	5.3
	5	13		7.8	0.1	0.8	1.2	3.7
	5	18		7.9	0.1	0.9	1.2	3.0
	5	23		8.0	0.1	1.0	1.2	2.6
	10	33		8.1	0.1	1.1	0.6	2.0
	10	43		8.2	0.1	1.2	0.6	1.7
	10	53		8.3	0.1	1.3	0.6	1.5
	10	63		8.5	0.2	1.5	1.2	1.4
	15	78		8.6	0.1	1.6	0.4	1.2
	15	93		8.7	0.1	1.7	0.4	1.1
	15	108		9.1	0.4	2.1	1.6	1.2
	15	123		9.9	0.8	2.9	3.2	1.4
	20	143		10.2	0.3	3.2	0.9	1.3

S	E	Document No		Issue No	0.	Page No.		
		OF/WWDSE/	338 /	1		1 of 1		1
Project	: Omo Vall	ey Farm projec	t					
Title:	Infiltra	tion Rate Meas	surement	Form				
Test Pit	no. MC-TF	P-2-IN1		Date: 12	2/05/07	Replication 1	Author:- A.T	
Surface	e Features:	- Flat surface fe	ature				UTM Readin	g
Test De	epth (m); 1.0)					N:192606	-
							E:574292	
							Datum: ADIN	JDAN
		Cumulative	Depth	of		Cumulative	Infiltration	rate
	Interval	time	water (o	cm)	Intake	intake	(cm/hr)	
Local	(mm)	(min)	Initial	Final	(cm)	(cm)	Immediate	Mean
23:00	0	0	186.5	186.5	0.0	0.0	0	0
	2	2		187.5	1.0	1.0	30	30.0
	2	4		188.5	1.0	2.0	30	30.0
	2	6		188.8	0.3	1.3	9	13.0
	2	8		189.1	0.3	0.6	9	4.5
	5	13		190.0	0.9	1.2	10.8	5.5
	5	18		190.5	0.5	1.4	6	4.7
	10	28		191.1	0.6	1.1	3.6	2.4
	10	38		192.8	1.7	2.3	10.2	3.6
	10	48		193.7	0.9	2.6	5.4	3.2
	10	58		194.8	1.1	2.0	6.6	2.1
	15	73	71.2	72.0	0.8	1.9	3.2	1.6
	15	88		72.3	0.3	1.1	1.2	0.7
	15	103		72.8	0.5	0.8	2	0.5
	15	118		78.0	5.2	5.7	20.8	2.9
	15	133		89.0	11.0	16.2	44	7.3
	15	148		98.0	9.0	20.0	36	8.1
Remark	s: 54 lts of	water used for	test, the te	est conduc	cted at de	pth of 1.00m, 250	om moisture pe	netration
50lts wa		e of water is pre-wetting bef			a. If the	inner ring =33c	m & outer dia	.= 57cm

S		Document No		Issue No	D.	Page No.		
	2	OF/WWDSE/	338 /	1		1 of 1		
Project	: Omo Vall	ey Farm projec	t					
Title:		tion Rate Meas		Form				
Test Pit	no. MC-CE	D-6-TP-1-IN1		Date: 09	0/05/07	Replication 1	Author:- A.T	
Surface	Features:	- Flat surface fe	eature				UTM Readin	g
Test De	epth (m); 1.5	5					N:574292	
							E:194762	
							Datum: Adin	dan
		Cumulative	Depth	of		Cumulative	Infiltration	rate
	Interval	time	water (cm)	Intake	intake	(cm/hr)	
Local	(mm)	(min)	Initial	Final	(cm)	(cm)	Immediate	Mean
23:00	0	0	60.9	60.9	0.0	0.0	0	0
	2	2		70.0	9.1	9.1	273.0	273.0
	2	4		70.1	0.1	9.2	3.0	138.0
	5	9		70.2	0.1	9.3	1.2	62.0
	5	14		70.3	0.1	9.4	1.2	40.3
	5	19		70.4	0.1	9.5	1.2	30.0
	5	24		70.5	0.1	9.6	1.2	24.0
	10	34		70.8	0.3	9.9	1.8	17.5
	10	44		80.5	9.7	19.6	58.2	26.7
	10	54		80.8	0.3	19.9	1.8	22.1
	10	64		80.9	0.1	20.0	0.6	18.8
	15	79		90.4	9.5	29.5	38.0	22.4
	15	94		90.8	0.4	29.9	1.6	19.1
	15	109		100.0	9.2	39.1	36.8	21.5
	15	124		100.6	0.6	39.7	2.4	19.2
	20	144		101.0	0.4	40.1	1.2	16.7
	20	164		101.7	0.7	40.8	2.1	14.9
	20	184		102.4	0.7	41.5	2.1	13.5

source of water is Omo river and dia. If the inner ring =28cm & outer dia.= 56cm 54lts was used for pre wetting before the test.

		Document		lssu	e No.	Page No.		
S	9	OF/WWDSE			1	1 of 1		
					ey Farm p			
		Title:	Infiltr			rement Form		
	no. MC-TP			Date: 1	3/05/07	Replication 1	Author:- A.T	
		Flat surface fea	ature				UTM Reading	9
Test De	pth (m); 1.5						N: 195924	
							E: 576969	
							Datum: Ad	
		Cumulative	Dep	th of		Cumulative	Infiltration	rate
	Interval	time	water		Intake	intake	(cm/hr	
Local	(min)	(min)	Initial	Final	(cm)	(cm)	Immediate	Mean
23:00	0	0	70.2	70.2	0.0	0.0	0	0
	2	2		70.5	0.3	0.3	9.0	9.0
	2	4		80.2	9.7	10.0	291.0	150.0
	2	6		80.7	0.5	10.5	15.0	105.0
	2	8		90.0	9.3	19.8	279.0	148.5
	5	13		100.0	10.0	29.8	120.0	137.5
	5	18		101.0	1.0	30.8	12.0	102.7
	10	28		102.5	1.5	32.3	9.0	69.2
	10	38		103.2	0.7	33.0	4.2	52.1
	10	48		104.5	1.3	34.3	7.8	42.9
	10	58		104.8	0.3	34.6	1.8	35.8
	10	68		105.7	0.9	35.5	5.4	31.3
	15	83	70.0	74.6	4.6	40.1	18.4	29.0
	15	98		75.2	0.6	40.7	2.4	24.9
	15	113		76.4	1.2	41.9	4.8	22.2
	15	128		83.4	7.0	48.9	28.0	22.9
	20	148		90.4	7.0	55.9	21.0	22.7
	20	168		92.3	1.9	57.8	5.7	20.6
;	20	188		93.4	1.1	58.9	3.3	18.8
	20	208		94.5	1.1	60.0	3.3	17.3
						oth of 1.00m, 25cr		

Remarks: 54 Its of water used for test, the test conducted at depth of 1.00m, 25cm moisture penetration, source of water is Omo river and dia. If the inner ring =33cm & outer dia.= 57cm 50lts was used for pre wetting before the test.

(SE	Document No		Issue N	0.	Page No.		
		OF/WWDSE/	338 /	1		1 of 1		
Project	t: Omo Vall	ey Farm projec	t					
Title:	Infiltra	tion Rate Meas	surement	Form				
Test Pit	t no. MC-TF	P-3-IN1		Date: 14	4/05/07	Replication 1	Author:- A.T	
Surface	e Features:	- Flat surface fe	ature			UTM Reading	g	
Test De	epth (m); 2.0)					N:578338	
							E:195057	
							Datum: Adino	dan
		Cumulative	Depth	of		Cumulative	Infiltration	rate
	Interval	time	water (c	:m)	Intake	intake	(cm/hr)	
Local	(mm)	(min)	Initial	Final	(cm)	(cm)	Immediate	Mean
1:30								
Remark	ks: due the o	coarse SAND fo	rmation, 1	150lsts wa	ater consu	me with in 14.25 r	nin.	

6	2	Document No		Issue N	0.	Page No.		
		OF/WWDSE/	338 /	1		1 of 1		
Project	: Omo Valle	y Farm project				1	T	
Title:	Infiltrat	ion Rate Measu	rement Fo	rm				
Test Pit	t no. MC-TF	2-4-IN2		Date: 10	6/05/07	Replication 1	Author:- A.T	
Surface	Features:	- Flat surface fe	ature	1		•	UTM Readin	q
Test De	epth (m); 2.0)					N:579388	
							E:194976	
							Datum: ADIN	IDAN
		Cumulative	Depth	of		Cumulative	Infiltration	rate
	Interval	time	water (c	m)	Intake	intake	(cm/hr)	
Local	(mm)	(min)	Initial	Final	(cm)	(cm)	Immediate	Mean
1:30								
Remark	s: due the	coarse SAND to	rmation, 2	225lsts wa	ater consu	ime with in 40 mir	1.	

OF/WWDS Valley Farm pro filtration Rate M C-TP-4-IN1 res: - Flat surface); 0.5 Cumulative val time) (min) 0 2 4	i ject easuremen e feature	Date: 1	Intake (cm) 0.0 0.2	1 of 1 Replication 1 Cumulative intake (cm) 0.0 0.2	Author:- A.T UTM Readin N:579388 E:194976 Datum: ADIN Infiltration (cm/hr) Immediate 0 6.0	NDAN rate Mean 0
filtration Rate Mo C-TP-4-IN1 res: - Flat surface (); 0.5 Cumulative val time (min) 0 2 4	e feature e feature e Depth water (Initial	Date: 1 of (cm) Final 7.5 7.7	Intake (cm) 0.0 0.2	Cumulative intake (cm) 0.0	UTM Readin N:579388 E:194976 Datum: ADIN Infiltration (cm/hr) Immediate 0	NDAN rate Mean 0
filtration Rate Mo C-TP-4-IN1 res: - Flat surface (); 0.5 Cumulative val time (min) 0 2 4	e feature e feature e Depth water (Initial	Date: 1 of (cm) Final 7.5 7.7	Intake (cm) 0.0 0.2	Cumulative intake (cm) 0.0	UTM Readin N:579388 E:194976 Datum: ADIN Infiltration (cm/hr) Immediate 0	NDAN rate Mean 0
res: - Flat surface); 0.5 Cumulative val time) (min) 0 2 4	e Depth water Initial	of (cm) Final 7.5 7.7	Intake (cm) 0.0 0.2	Cumulative intake (cm) 0.0	UTM Readin N:579388 E:194976 Datum: ADIN Infiltration (cm/hr) Immediate 0	NDAN rate Mean 0
i); 0.5 Cumulative val time) (min) 0 2 4	e Depth water Initial	(cm) Final 7.5 7.7	Intake (cm) 0.0 0.2	intake (cm) 0.0	N:579388 E:194976 Datum: ADIN Infiltration (cm/hr) Immediate 0	NDAN rate Mean 0
Cumulative val time) (min) 0 2 4	water (Initial	(cm) Final 7.5 7.7	Intake (cm) 0.0 0.2	intake (cm) 0.0	E:194976 Datum: ADIN Infiltration (cm/hr) Immediate 0	rate Mean 0
val time) (min) 0 2 4	water (Initial	(cm) Final 7.5 7.7	Intake (cm) 0.0 0.2	intake (cm) 0.0	Datum: ADIN Infiltration (cm/hr) Immediate 0	rate Mean 0
val time) (min) 0 2 4	water (Initial	(cm) Final 7.5 7.7	Intake (cm) 0.0 0.2	intake (cm) 0.0	Infiltration (cm/hr) Immediate 0	rate Mean 0
val time) (min) 0 2 4	water (Initial	(cm) Final 7.5 7.7	Intake (cm) 0.0 0.2	intake (cm) 0.0	(cm/hr) Immediate 0	Mean 0
) (min) 0 2 4	Initial	Final 7.5 7.7	(cm) 0.0 0.2	(cm) 0.0	Îmmediate 0	0
0 2 4		7.5 7.7	0.0	0.0	0	0
2 4	7.5	7.7	0.2		-	-
4				0.2	60	0.0
		7.9				6.0
		1.0	0.2	0.4	3.0	6.0
6		8.2	0.3	0.7	3.0	7.0
11		8.9	0.7	1.4	3.8	7.6
16		9.2	0.3	1.7	1.1	6.4
21		9.5	0.3	2.0	0.9	5.7
31		9.8	0.3	2.3	0.6	4.5
41		10.2	0.4	2.7	0.6	4.0
51		10.5	0.3	3.0	0.4	3.5
						3.2
					-	3.0
96		12.1	0.6	4.6	0.4	2.9
	7.5	7.9	0.4	5.0		2.6
136		8.2	0.3		0.1	2.3
156		8.5	0.3	5.6	0.1	2.2
			0.4			2.0
206		9.2	0.3	6.3	0.1	1.8
	66 81 96 116 136 156 181	66 81 96 116 7.5 136 156 181	66 11.0 81 11.5 96 12.1 116 7.5 7.9 136 8.2 156 8.5 181 8.9	66 11.0 0.5 81 11.5 0.5 96 12.1 0.6 116 7.5 7.9 0.4 136 8.2 0.3 156 8.5 0.3 181 8.9 0.4	66 11.0 0.5 3.5 81 11.5 0.5 4.0 96 12.1 0.6 4.6 116 7.5 7.9 0.4 5.0 136 8.2 0.3 5.3 156 8.5 0.3 5.6 181 8.9 0.4 6.0	66 11.0 0.5 3.5 0.5 81 11.5 0.5 4.0 0.4 96 12.1 0.6 4.6 0.4 116 7.5 7.9 0.4 5.0 0.2 136 8.2 0.3 5.3 0.1 156 8.5 0.3 5.6 0.1 181 8.9 0.4 6.0 0.1

Remarks: 54 Its of water used for test, the test conducted at depth of 0.50m, 50cm moisture penetration, source of water is Omo river and dia. If the inner ring =28cm & outer dia.= 56cm

	SE	Document No		Issue N	0.	Page No.		
0		OF/WWDSE/		1		1 of 1		
Project		ey Farm projec						
Title:		tion Rate Meas	surement					
	t no. MC-TF			Date: 23	3/01/15	Replication 1	Author:- A.T	
Surface	e Features:	- Flat surface fe	eature				UTM Readin	g
Test De	epth (m); 3.′	10					N:194814	
							E:579940	
							Datum: ADIN	IDAN
		Cumulative	Depth	of		Cumulative	Infiltration	rate
	Interval	time	water (cm)	Intake	intake	(cm/hr)	
Local	(mm)	(min)	Initial	Final	(cm)	(cm)	Immediate	Mean
1:28	0	0	7.5	7.5	0.0	0.0	0	0
	2	2		7.9	0.4	0.4	12.0	12.0
	2	4		8.4	0.5	0.9	7.5	13.5
	2	6		9.3	0.9	1.8	9.0	18.0
	5	11		10.0	0.7	2.5	3.8	13.6
	5	16		10.9	0.9	3.4	3.4	12.8
	5	21		11.8	0.9	4.3	2.6	12.3
	10	31		13.2	1.4	5.7	2.7	11.0
3:10	10	41		14.7	1.5	7.2	2.2	10.5
	10	51	7.5	8.9	1.4	8.6	1.6	10.1
	15	66		11.6	2.7	11.3	2.5	10.3
4:00	15	81		13.8	2.2	13.5	1.6	10.0
	15	96	7.5	9.5	2.0	15.5	1.3	9.7
	20	116		12.0	2.5	18.0	1.3	9.3
	20	136	7.5	9.9	2.4	20.4	1.1	9.0
	20	156		12.0	2.1	22.5	0.8	8.7
	20	176	7.5	9.4	1.9	24.4	0.6	8.3
	20	196		11.1	1.7	26.1	0.5	8.0
;								

Remarks: 125 Its of water used for test, the test conducted at depth of 3.10m, 50cm moisture penetration, source of water is Omo river and dia. If the inner ring =18.2cm & outer dia.= 57cm 100Its was used for pre-wetting for two days before the test.

C		Document No		Issue N	0.	Page No.		
		OF/WWDSE/		1		1 of 1	X	
		ey Farm projec						
Title:		ation Rate Meas	surement					
	<u>t no. MC-01</u>			Date: 23	3/05/07	Replication 1	Author:- Eyo	
		- Flat surface fe	eature				UTM Readin	g
Test De	epth (m); 0.8	5					N:581252	
							E:198226	
	1	1	-		1	1	Datum: ADIN	IDAN
		Cumulative	Depth	of		Cumulative	Infiltration	rate
	Interval	time	water (Intake	intake	(cm/hr)	
Local	(mm)	(min)	Initial	Final	(cm)	(cm)	Immediate	Mean
1:23	0	0	7.5	7.5	0.0	0.0	0	0
	2	2		7.7	0.2	0.2	6.0	6.0
	2	4		7.8	0.1	0.3	1.5	4.5
	2	6		7.9	0.1	0.4	1.0	4.0
	5	11		8.0	0.1	0.5	0.5	2.7
	5	16		8.1	0.1	0.6	0.4	2.3
	5	21		8.3	0.2	0.8	0.6	2.3
	10	31		8.5	0.2	1.0	0.4	1.9
	10	41		8.7	0.2	1.2	0.3	1.8
	10	51		8.9	0.2	1.4	0.2	1.6
	10	61		9.1	0.2	1.6	0.2	1.6
	15	76		9.5	0.4	2.0	0.3	1.6
	15	91		9.8	0.3	2.3	0.2	1.5
	15	106		10.1	0.3	2.6	0.2	1.5
	15	121		10.3	0.2	2.8	0.1	1.4
	20	141		10.8	0.5	3.3	0.2	1.4
	20	161		11.3	0.5	3.8	0.2	1.4
	20	181		11.6	0.3	4.1	0.1	1.4
;								
Remarl	ks: 40 lt	s of water	used for	or test,	the tes	st conducted	at depth of	0.50m
	sourc	e of	water	· is	s (Omo river	and	dia
50 Its w	as used for	pre-wetting bef	ore the te	st.				

		Document No).	Issue N	0.	Page No.		
e e		OF/WWDSE/	338 /	1		1 of 1		
Project	t: Omo Vall	ey Farm projec	t					
Title:		tion Rate Meas	surement					
	t no. MC-01			Date: 19	9/05/07	Replication 1	Author:- Eyou	Jal
Surface	e Features:	- Flat surface fe	eature				UTM Reading	9
Test De	epth (m); 1.9	90					N:578435	
							E:198217	
							Datum: ADIN	DAN
		Cumulative	Depth	of		Cumulative	Infiltration	rate
	Interval	time	water (c		Intake	intake	(cm/hr)	
Local	(mm)	(min)	Initial	Final	(cm)	(cm)	Immediate	Mean
1:23	0	0	7.5	7.5	0.0	0.0	0	0
	2	2		7.7	0.2	0.2	6.0	6.0
	2	4		7.8	0.1	0.3	1.5	4.5
	2	6		7.9	0.1	0.4	1.0	4.0
	5	11		8.1	0.2	0.6	1.1	3.3
	5	16		8.2	0.1	0.7	0.4	2.6
	5	21		8.3	0.1	0.8	0.3	2.3
	10	31		8.5	0.2	1.0	0.4	1.9
	10	41		8.6	0.1	1.1	0.1	1.6
	10	51		8.8	0.2	1.3	0.2	1.5
	10	61		9.0	0.2	1.5	0.2	1.5
	15	76		9.2	0.2	1.7	0.2	1.3
	15	91		9.4	0.2	1.9	0.1	1.3
	15	106		9.7	0.3	2.2	0.2	1.2
	15	121		10.0	0.3	2.5	0.1	1.2
	20	141		10.3	0.3	2.8	0.1	1.2
	20	161		10.6	0.3	3.1	0.1	1.2
	20	181		10.8	0.2	3.3	0.1	1.1
;								
Remark	ks: 50 lt sourc		used fo water			st conducted a Dmo river	at depth of and	1.90m dia
50 lto v					s (Jino iivei	anu	ula
U Its w	as used for	pre-wetting bef	ore the tes	st.				

(5)		Document		lssu	e No.	Page No.		
		OF/WWDSE			1	1 of 1		
					Farm pro			
		Title:				ement Form		
Tes		CD-2-TP-1-IN			2/05/07	Replication 1	Author:-	
	S	Surface Feature			ature		UTM Rea	<u> </u>
		Test D)epth (m);	2.0			N:5779	
							E:1979	77
	1	1	1			1	Datum: AD	
		Cumulative		th of		Cumulative	Infiltration	
	Interval	time	water	(cm)	Intake	intake	(cm/h	1
Local	(min)	(min)	Initial	Final	(cm)	(cm)	Immediate	Mean
2:30AM	0	0	157.0	157	0.0	0.0	0	0
	2	2		161.2	4.2	4.2	126.0	126.0
	2	4		163.0	1.8	6.0	54.0	90.0
	2	6		165.0	2.0	8.0	60.0	80.0
	5	11		168.0	3.0	11.0	36.0	60.0
	5	16		170.0	2.0	13.0	24.0	48.8
	5	21		173.0	3.0	16.0	36.0	45.7
	10	31	157.0	164.0	7.0	23.0	42.0	44.5
	10	41		170.0	6.0	29.0	36.0	42.4
	10	51		173.0	3.0	32.0	18.0	37.6
	15	66	157.5	166.0	8.5	40.5	34.0	36.8
	15	81		170.0	4.0	44.5	16.0	33.0
	15	96		174.0	4.0	48.5	16.0	30.3
	15	111		178.0	4.0	52.5	16.0	28.4
Remarks:		urce of water is	Omo rive	r and dia	If the inn	th of 2.0m, 90cm er ring =33cm & c e the test.		

6		Document	No.	lssu	e No.	Page No.		
C		OF/WWDSE			1	1 of 1		
		F	Project: C	Omo Valle	ey Farm p	roject		
		Title:		ration Ra	te Measu	ement Form		
-	Test Pit no.	MC-01-TP-1-IN			22/05/07	Replication 1	Author:-	A.T
		Surface Featur	es: - Flat	surface f	eature		UTM Rea	- U
		Test	Depth (m)); 0.50			N:5772	
							E:1976	
							Datum: ADI	
		Cumulative		th of		Cumulative	Infiltration	rate
	Interval	time	water		Intake	intake	(cm/hr	-)
Local	(mm)	(min)	Initial	Final	(cm)	(cm)	Immediate	Mean
1:40	0	0	7.5	7.5	0.0	0.0	0	0
	2	2		7.6	0.1	0.1	3.0	3.0
	2	4		7.8	0.2	0.3	6.0	4.5
	2	6		8.0	0.2	0.5	6.0	5.0
	5	11		8.4	0.4	0.9	4.8	4.9
	5	16		8.9	0.5	1.4	6.0	5.3
	5	21		9.3	0.4	1.8	4.8	5.1
	10	31		9.9	0.6	2.4	3.6	4.6
	10	41		10.7	0.8	3.2	4.8	4.7
	10	51		11.4	0.7	3.9	4.2	4.6
	10	61		12.3	0.9	4.8	5.4	4.7
	15	76		13.5	1.2	6.0	4.8	4.7
	15	91	7.5	8.5	1.0	7.0	4.0	4.6
	15	106		9.5	1.0	8.0	4.0	4.5
	15	121		10.4	0.9	8.9	3.6	4.4
	20	141		11.8	1.4	10.3	4.2	4.4
	20	161		13.2	1.4	11.7	4.2	4.4
	20	181		14.6	1.4	13.1	4.2	4.3
Rema		source of water	is Omo riv	ver and di	ia. If the in	oth of 5.0m, 50cm ner ring =28cm & or the test.		

	E	Document		lssu	e No.	Page No.		
Č		OF/WWDSE			1	1 of 1		
					ey Farm p			
		Title:		ration Ra	te Measui	rement Form		
-	Test Pit no.	MC-01-TP-3-IN			27/01/15	Replication 1	Author:-	
		Surface Featur	es: - Flat	surface f	eature		UTM Rea	ding
		Test	Depth (m)); 1.50			N:	
							E:	
							Datum: ADI	NDAN
		Cumulative	Dep	th of		Cumulative	Infiltration	rate
	Interval	time	water	· · · /	Intake	intake	(cm/hi	r)
Local	(mm)	(min)	Initial	Final	(cm)	(cm)	Immediate	Mear
1:40	0	0	7.5	7.5	0.0	0.0	0	0
	2	2		7.6	0.1	0.1	3.0	3.0
	2	4		7.8	0.2	0.3	6.0	4.5
	2	6		7.9	0.1	0.4	3.0	4.0
	5	11		8.0	0.1	0.5	1.2	2.7
	5	16		8.1	0.1	0.6	1.2	2.3
	5	21		8.1	0.0	0.6	0.0	1.7
	10	31		8.2	0.1	0.7	0.6	1.4
	10	41		8.4	0.2	0.9	1.2	1.3
	10	51		8.5	0.1	1.0	0.6	1.2
	15	66		8.9	0.4	1.4	1.6	1.3
	15	81		9.1	0.2	1.6	0.8	1.2
	15	96		9.3	0.2	1.8	0.8	1.1
	15	111		9.5	0.2	2.0	0.8	1.1
	20	131		9.7	0.2	2.2	0.6	1.0
	20	151		9.9	0.2	2.4	0.6	1.0
	20	171		10.2	0.3	2.7	0.9	0.9
	20	191		10.4	0.2	2.9	0.6	0.9
	20	211		10.6	0.2	3.1	0.6	0.9
Rema		source of water	is Omo riv	/er and di	a. If the in	oth of 5.0m, 50cm ner ring =28cm & for the test.		

APPENDIX-B

APPENDIX B-1: Summary of Laboratory Test Results

								-			RM PF										
											RATOR										
		of				G		ize dis				berg Li						rect lear		Che	mical
N°	TP ID	Location of Test pit	Sample type	Sample Depth (m)	Unit weight (gm/cc)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Fine (%)	LL (%)	PL (%)	PI (%)	Swell (%)	Hole	NMC (%)	с (КРа)	f (Deg.)	Conso. Cc	Sulphate (meq/l)	Chloride (meq/l)
1			BDS	0.0- 5.0	1.12									47.5			48. 33	18.0 0	0.24 6	8.48	10.36
2			SDS	0.0- 2.50			65. 8	25. 9	8.3	34. 2	22.8 9	NP				4.8 9					
3	PS-1- TP1	Prop. Pump	SDS	2.5- 5.0			30. 4	48. 4	21. 2	69. 6	31.8 6	20. 70	11. 16								
4			BDS	0.0- 5.0	1.07									42.5			15	26	0.19	5.72	8.96
5			SDS	0.0- 1.30			41. 28	43. 22	15. 50	58. 7	27.0 1	17. 49	9.5 2			5.1 4					
6			SDS	1.3- 3.0			36. 36	48. 35	15. 29	63. 6	29.0 5	24. 22	4.8 3			8.4 7					
7	PS-1- TP2	Prop. Pump	SDS	3.0- 5.0			24. 44	47. 75	27. 81	75. 6	39.4 8	22. 33	17. 15			16. 45					
8		GULLY	BDS	0.0- 5.0	1.69									0.0			38. 33	28.1 5	0.03 2	0.24	0.7
9	G-2- TP-1	CROS S	SDS	1.0- 3.70		28. 00	66. 59	4.7 1	0.0 0	4.7	25.1 2	NP									
10			BDS	0.0- 5.0	1.57									0.0			42. 33	29.4 5	0.19 0	0.26	1.12
11			SDS	1.20- 3.0		21. 00	73. 54	5.4 6	0.0 0	5.5	26.1 0	NP				0.3 7					
12	PS-2- TP1	BOOS TER	SDS	3.0- 5.0			94. 53	5.4 7	0.0 0	5.5	26.4 0	NP									

												ROJEC									
							SUM				AL SIT	RY RES	SULIS)							
Nº		Locatio		Samp	Unit	G	Grain s	ize Ana		-	A	tterber Limits					Sh	rect ear		Che	mical
	TP ID	n of Test pit	Sam ple type	le Depth (m)	weig ht (gm/ cc)	Gravel (%)	Sand	Silt (%)	Clay	Fine	LL (%)	PL (%)	PI (%)	Free Swell	NMC (%)	Permeab. (cm/sec)	c (KPa)	f (Dea.)	CC	Sulphate (meq/l)	Chloride (meq/l)
1		Main	BDS	0.0- 3.0	1.45											2.29*1 0-2	4.3 3	37. 6	0.03 41	0.35	0.56
2	MC-TP-	canal alignm	SDS	0.60- 1.80	1.45	2.23	93. 97	3.8	0.0 0	4	27. 06	NP			5.2	0-2	5	0	41	0.00	0.50
3		ent	SDS	1.80- 3.00		13.2 4	69. 73	13. 15	3.8 8	17	24. 00	NP			7.8 2						
4	MC-	Main	BDS	0.0- 5.0	1.31									10. 00			9.9 3	30. 42		4.78	0.70
5	CD3- TP1	canal Cross	SDS	0.0- 1.50			86. 64	9.2 5	4.1 1	13	22. 50	NP			0.5 4						
6		Drain	SDS	3.20- 5.0			57. 12	38. 90	9.9 8	49	32. 78	NP			1.1 2						
7	мс-	Main	BDS	0.0- 5.0	1.34									0.0 0			28. 00	27. 92		3.99	0.42
8	CD4- TP1	canal Cross	SDS	1.0- 2.80			51. 12	38. 90	9.9 8	49	22. 30	15. 56	6.7 4		10. 78						
9		Drain	SDS	2.80- 5.0			93. 23	5.1 2	1.6 8	7	24. 04	NP									
10	MC- CD5-	Main canal	BDS	1.10- 5.0	1.27									0.0 0			32. 16	27. 65		0.26	0.35
11	TP1	Cross Drain	SDS	1.10- 3.30			62. 59	32. 91	4.5 0	37	17. 55	NP			1.9 7						
12	MC-	Main	BDS	1.50- 5.0	1.35									37. 50			18. 93	28. 26		3.99	0.21
13	CD6- TP1	canal Cross	SDS	1.50- 2.0			56. 55	33. 79	9.6 6	43	42. 68	23. 85	18. 83		2.4 3						
14		Drain	SDS	2.10- 5.0		13.9 4	77. 98	7.1 7	0.9 1	8	23. 27	NP			0.8 7						

									OMO V													
								SUN P	IMARY (RIMAR)	OF LAB	ORATO L(Main o	RY RES canal) S	ULTS									
						Grain	size dis	tributio		-												
		est pit		(m)	m/cc)						Atterb Limits	erg			neter		/sec)	Direo Shea		Con dn.	Chei I	nica
N٥	TPID	Location ofTest pit	Sampletype	SampleDepth(m)	Unitweight(gm/cc)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Fine (%)	(%) LL	(%) PL	ы (%)	FreeSwell(%)	Doub.Hydrometer	NMC(%)	Permeab.(cm/sec)	C(KPa)	F(Deg.)	Cc	Sulphate (meq/l)	Chloride (meq/l)
1	MC-	Prim ary	B D S	0.0- 1.70	1.2 4		61.0 0	28.0 0	11.0 0	39				10. 00	N D		.4.24* 10-5				0.8	0.1 4
2	TP4	canal -1	S D S	0.0- 1.70							42.4 2	21.5 0	20.9 2									
3	MC-	Cros s	S D S	0.50 -1.0			42.0 0	42.0 0	12.0 0	54												
4	CD4	drain age	S D S	1.8- 3.0		62.0 0	38.0 0															
5	MC- 01-	Pri.c anal-	B D S	0.0- 3.0	1.3 1		80.0 0	14.0 0	6.00	20	25.2 4	NP		0.0 0	N D		8.17* 10-4					
6	TP6	2	S D S	0.5- 1.0		2.00	80.0 0	16.0 0	2.00	18												
7	MC- 01-	Cros s	B D S	1.60 -4.0	1.3 4									5.0 0				43. 66	23. 99	0.05 7	0.6 4	
8	CD-2	drain age	S D S	1.60 -2.0			93.6 6	3.08	3.26		20.9 5	NP				1.39						
9	MC- 01- CD-3	Cros s drain	B D S	1.10 -5.0	1.2 1									10. 0				54. 39	23. 57		0.3 3	0.1 4
10	00-5	age	S	1.10			42.4	53.3	4.25	58	33.7	27.5	6.16			2.39						

Water Works Design and

Supervision Enterprise

Omo Valley Farm Co-operation P.L.C Omo Valley Farm Irrigation Project

Section-III: Investigation and Sectoral Studies Volume-IV: Geotechnical Investigations and Foundation Recommendations

			D S	-2.0			1	5			2	6							
11			S D S	2.0- 5.0			59.7 0	37.8 0	2.49	40	26.3 9	19.8 9	6.50		1.76				
12	MC- 01-	Cros s	B D S	1.0- 3.50	1.3 8									0.0			0.04 6	1.7 2	0.2 1
13	CD-7	drain age	S D S	1.0- 3.50		7.93	43.2 5	35.4 1	13.4 0	49	25.0 5	14.6 0	10.4 5		0.46				

002	ation :- Qua	<u>no Valley Farm Proj</u> rry Site							
	Rock Sam	ples							
	Sample ID	Location of Quarry Site	Sample Depth	SG	Water Absorption	AIV (%)	Soundness (SSS)	LAA	Point Load
No			(m)		(%)		(%)	(%)	(Mpa)
1	RQ1	Quarry-1	Surface	3.01	0.62	39.92	2.56	49.95	6.62

REMARK

LAA-AIV-Aggregate Impact Value SSS-Soundness by Sodium Sulphate SG- (Specific Gravity)

		Omo Valley Farr	n Project											
Loo	cation :-	River deposits												
III	Sand/A	Aggregate & Filter	r											
Ν	TP/B	Location of	Sampl		Specifi	Grain s	ize dist	ributior	1					
0	H ID	Borrow/Quarr y	e Type	Depth (m)	c gravity	Grave I (%)	San d (%)	Silt (%)	Cla y (%)	Fine (%)	LA A	Soundnes s	Finenes s Modulus	Water Absorptio
1	S1	Sand Sewugela	SDS	0.0- 3.0	2.77	17.71	64.7 6	14.1 3	3.40	17.5 3	(%)	(%)		(%)
2]	River	BDS	0.0-							N/A	12.13	3	2.86

Omo Valley Farm Co-operation P.L.C Omo Valley Farm Irrigation Project

Section-III: Investigation and Sectoral Studies Volume-IV: Geotechnical Investigations and Foundation Recommendations

		3.0					

							C	OMO VA	ALLEY	FARM	PROJ	ЕСТ							
							SUMI	MARY	-	-	-	ESULT	S						
	1							-	ΑΥ ΒΟ	RROW	SITE						1		
		Locati				Grain	size d	istribut	tion					Comp	paction	1	1	Chemica	al
		on of	Samp	Samp	Unit					Atter	berg Li	mits	Fre						
	TP		le	le	weigh					LL	PL	PI	е	NM	OM		Perme	Sulpha	Chlori
		Test	type	Depth	t	San	0.14	Cla	Fin	(%)	(%)	(%)	Swe	C	C	MDD	ab.	te	de
0 0	ID	pit		(m)	(gm/c c)	d (%)	Silt (%)	y (%)	e (%)				 (%)	(%)	(%)	(g/cm 3)	(cm/sec)	(meq/l)	(meq/l)
		Clay		0.0-									57.5		25.2		1.44*10		
1	CB-	borro	BDS	3.0	1.15								0		0	1.574	-2	2.14	2.94
	TP-1	w-2		0.50-		12.3	58.1	29.5	87.6	45.7	23.1	22.6							
2		VV - 2	SDS	3.0		8	2	0	2	7	3	4		7.28					
		Clay		0.0-									42.5		25.4		2.41*10		
3	CB-	borro	BDS	3.0	1.66								0		0	1.508	-5	2.14	2.94
	TP-2	w-1		0.0-			83.8		92.5	34.7	27.2			11.4					
4		VV - 1	SDS	1.60		7.48	8	8.64	2	9	8	7.51		3					

APPENDIX B-2: Tables & Chart Reference Used for Analysis

Soil group in	c	omparable soil group:	s in AASHTO system
USCS	Mostprobable	Possible	Possible but improbable
A-1a	GW, GP	SW, SP	GM, SM
A-1b	SW, SP, GM, SM	GP	<u>.</u>
A-3	SP	5 <u>1</u> 3	SW, GP
A-2-4	GM, SM	GC, SC	GW, GP, SW, SP
A-2-5	GM, SM		GW, GP
A-2-6	GC, SC	GM, SM	GW, GP
A-2-7	GM, GC, SM, SC	0.70	GW, GP, SW, SP
A-4	ML, OL	CL, SM, SC	GM, GC
A-5	OH, MH, ML, OL	1.0	SM, GM
A-6	CL	ML, OL, SC	GC, GM, SM
A-7-5	он, мн	ML, OL, CH	GM, SM, GC, SC
A-7-6	CH, CL	ML, OL, SC	OH, MH, GC, GM, SM

ดารางที่ **4.7** ตารางเปรียบเทียบดินที่จัดกลุ่มตามระบบ AASHTO กับ USCS (Liu, 1970)

General Classification		(35%	Gra or less pass	inular mater ing No. 200		'5 mm)		More to	han 35% pa	Materials ssing No. 20 5 mm)	00 Sieve
0	A-	_1	176 70	1	A-	-2					A-7
Group Classification	A—1—a	А—1—b	A—3	A-2-4	A25	A26	A27	A—4	A—5	A—6	A_7_ A_7_
(a) Sieve Analysis: Percent Passing	16										
(i) 2.00 mm (No. 10)	50 max										
(ii) 0.425 mm (No. 40)	30 max	50 max	51 min								
(iii) 0.075 mm (No. 200)	15 max	25 max	10 max	35 max	35 max	35 max	35 max	36 min	36 min	36 min	36 min
(b) Characteristics of fraction passing 0.425 mm (No. 40)											
(i) Liquid limit				40 max	41 min	40 max	41 min	40 max	41 min	40 max	. 41 min
(ii) Plasticity index	6 n	nax	N.P.	10 max	10 max	11 min	11 min	10 max	10 max	11 min	11 min
(c) Usual types of significant Constituent materials	Stone Fr Gravel a	agments and sand	Fine Sand	Si	ilty or Claye	ey Gravel Sa	ind	Silty	Soils	Claye	y Soils
(d) General rating as subgrade.					ood				Fair t	o Poor	

* If plasticity index is equal to or less than (liquid Limit—30), the soil is A—7—5 (*i.e.* PL > 30%) If plasticity index is greater than (Liquid Limit—30), the soil is A—7—6 (*i.e.* PL < 30%)

General Classification	1000	anular Mater ess Passing (100 KC 10	(More		Materials Passing 0.07	5 mm)
Group Classification	A-1	A-3ª	A-2	A-4	A-5	A-6	A-7
Sieve analysis, percent passing:							
2.00 mm (No. 10)				\rightarrow			—
0.425 mm (No. 40)	50 max.	51 min.	-	-			—
0.075 mm (No. 200)	25 max.	10 max.	35 max.	36 min.	36 min.	36 min.	36 min
Characteristics of fraction passing 0.425 mm (No. 40)							
Liquid limit				40 max.	41 min.	40 max.	41 min
Plasticity index	6 max.	N.P.	b	10 max.	10 max.	11 min.	11 min
General rating as subgrade	Ex	cellent to go	bod		Fair to	o poor	

TABLE 15.2 Classification of Soils and Soil-Aggregate Mixtures by the AASHTO System

^a The placing of A-3 before A-2 is necessary in the "left to right elimination process" and does not indicate superiority of A-3 over A-2.

^b See Table 15.3 for values.

From Standard Specification for Transportation Materials and Methods of Sampling and Testing. Copyright 1990 by the American Association of State Highway and Transportation Officials, Washington, D.C. Used by permission.

General Classification	Granular materials (35% or less passing No. 200 Sieve (0.075 mm)							Silt-clay Materials More than 35% passing No. 200 Sieve (0.075 mm)			
Group Classification	A—1			A—2							A-7
	A-1-a	А—1—b	A—3	A-2-4	A25	A26	A27	A—4	A—5	A6	A-7-5 A-7-6
(a) Sieve Analysis: Percent Passing	1.6										
(i) 2.00 mm (No. 10)	50 max		1.3								
(ii) 0.425 mm (No. 40)	30 max	50 max	51 min								
(iii) 0.075 mm (No. 200)	15 max	25 max	10 max	35 max	35 max	35 max	35 max	36 min	36 min	36 min	36 min
(b) Characteristics of fraction passing 0.425 mm (No. 40)											
(i) Liquid limit	· Carlo			40 max	41 min	40 max	41 min	40 max	41 min	40 max	. 41 min
(ii) Plasticity index	6 max		N.P.	10 max	10 max	11 min	11 min	10 max	10 max	11 min	11 min*
(c) Usual types of significant Constituent materials.	Stone Fragments Gravel and sand		Fine Sand	Silty or Clayey Gravel Sand				Silty Soils		Clayey Soils	
(d) General rating as subgrade.	Excellent to Good							Fair to Poor			

Table 5.1. AASHTO Classification System

* If plasticity index is equal to or less than (liquid Limit—30), the soil is A—7—5 (*i.e.* PL > 30%) If plasticity index is greater than (Liquid Limit—30), the soil is A—7—6 (*i.e.* PL < 30%)

APPENDIX-C

APPENDIX C-1: Site Photographs

Photo: 8- 5: Photo view of construction material sites

Photo: 8- 6: Photo View of field Investigation methodology